6,379 research outputs found

    Tsallis holographic dark energy in the Brans-Dicke cosmology

    Full text link
    Using the Tsallis generalized entropy, holographic hypothesis and also considering the Hubble horizon as the IR cutoff, we build a holographic model for dark energy and study its cosmological consequences in the Brans-Dicke framework. At first, we focus on a non-interacting universe, and thereinafter, we study the results of considering a sign-changeable interaction between the dark sectors of the cosmos. Our investigations show that, compared with the flat case, the power and freedom of the model in describing the cosmic evolution is significantly increased in the presence of the curvature. The stability analysis also indicates that, independent of the universe curvature, both the interacting and non-interacting cases are classically unstable. In fact, both the classical stability criterion and an acceptable behavior for the cosmos quantities, including the deceleration and density parameters as well as the equation of state, are not simultaneously obtainable.Comment: Accepted version, Eur. Phys. J. C (2018

    Atmospheric dynamics in high obliquity planets

    Get PDF
    Ongoing discoveries of terrestrial exoplanets and the desire to determine their habitability have created an increasing demand for studies of a wide range of climatic regimes and atmospheric circulations. These studies have, in turn, challenged our understanding of our own planet’s atmospheric dynamics and provided new frameworks with which we can further our understanding of planetary atmospheres. In this work, we use an idealized moist general circulation model in aquaplanet configuration to study the atmospheric circulation of terrestrial planets with high obliquities. With seasonally varying insolation forcing and a shallow slab ocean as a lower boundary, we emphasize seasonal phenomena that might not be captured in simulations with annual mean forcing and that might involve nonlinear behaviors. By progressively increasing obliquity, we explore the response of the large-scale atmospheric circulation to more extreme seasonal cycles and a reversed annual mean equator-to-pole insolation distribution, and its impact on the energy and water cycles. We show that for high obliquities, the large-scale atmospheric circulation and the meridional energy transport are dominated by seasonally reversing broad cross-equatorial Hadley cells that transport energy from the summer to the winter hemisphere and significantly mitigate temperature extremes. These overturning cells also play a major role in shaping the planet’s hydrological cycle, with the associated ascending branches and precipitation convergence zones becoming progressively broader and more poleward shifted into the summer hemisphere with higher obliquities. While not embedded within the Hadley cell ascending branches, the hot summer poles of high obliquity planets experience nonnegligible precipitation during and at the end of the warm season: during the summer, lower-level moist static energy maxima at the summer poles force locally enhanced convective activity. As temperatures rapidly drop at the end of the summer and convective activity decreases, the water-holding capacity of the atmosphere decreases and water vapor stored in the atmospheric column rapidly condenses out, extending the duration of the summer pole rainy season into the corresponding autumn. Our study reveals novel understanding of how atmospheric dynamics might influence a planet’s overall climate and its variability

    Investigation of Stiffening Effects on Notch Growth Trajectory of Composite Stiffened Panels with Large Transverse Notches

    Get PDF
    Design of robust aircraft structure requires consideration of the load-carrying capability with large damage. Large notches, typically introduced as machined cracks (aka notches) severing a single skin bay and a central stiffening member, are often used to conservatively address the wide range of possible large damage scenarios. The objective of current effort was to explore the viability of developing preliminary laminate-based methods for predicting crack turning at the adjacent stiffener using traditional fracture mechanics concepts

    Characteristics and energy dependence of recurrent galactic cosmic-ray flux depressions and of a forbush decrease with LISA Pathfinder

    Get PDF
    The final publication is available at IOS Press through http://dx.doi.org/10.3847/1538-4357/aaa774Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder, meant for subsystems diagnostics, was devoted to the measurement of GCR and solar energetic particle integral fluxes above 70 MeV n-1 up to 6500 counts s-1. PD data were gathered with a sampling time of 15 s. Characteristics and energy dependence of GCR flux recurrent depressions and of a Forbush decrease dated 2016 August 2 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections is also discussed.Peer ReviewedPreprin
    • …
    corecore