445 research outputs found

    Leading interactions in the β\beta-SrV6O15Sr V_6 O_{15} compound

    Full text link
    The present study shows that the electronic structure of the β\beta-AV_6O_15AV\_6O\_{15} family of compounds (A=Sr,Ca,Na...A = Sr, Ca, Na ...) is based on weakly interacting two-leg ladders, in contrast with the zig-zag chain model one could expect from their crystal structure. Spin dimer analysis, based on extended H\"{u}ckel tight-binding calculations, was performed to determine the structure of the dominant transfer and magnetic interactions in the room temperature β\beta-SrV_6O_15SrV\_6O\_{15} phase. Two different two-legs ladders, associated with different charge/spin orders are proposed to describe these one-dimensional β\beta-type systems. The antiferromagnetic ladders are packed in an 'IPN' geometry and coupled to each other through weak antiferromagnetic interactions. This arrangement of the dominant interactions explains the otherwise surprising similarities of the optical conductivity and Raman spectra for the one-dimensional β\beta-type phases and the two-dimensional α\alpha-type ones such as the well-known α′\alpha^\prime-NaV_2O_5NaV\_2O\_5 system

    Correlation and Dimerization Effects on the Physical Behavior of the NR4[Ni(dmit)2]2NR_4 [Ni(dmit)_2]_2 Charge Transfer Salts : A DMRG Study of the Quarter-Filling t-J Model

    Full text link
    The present work studies the quasi one-dimensional Ni(dmit)2Ni(dmit)_2-based compounds within a correlated model. More specifically, we focus our attention on the composed influence of the electronic dimerization-factor and the repulsion, on the transport properties and the localization of the electronic density in the ground-state. Those properties are studied through the computation of the charge gaps (difference between the ionization potential and the electro-affinity: IP-EA) and the long- and short-bond orders of an infinite quarter-filled chain within a t−J(t,U)t-J(t,U) model. The comparison between the computed gaps and the experimental activation energy of the semiconductor NH2Me2[Ni(dmit)2]2NH_2Me_2 [Ni(dmit)_2]_2 allows us to estimate the on-site electronic repulsion of the Ni(dmit)2Ni(dmit)_2 molecule to 1.16eV1.16eV.Comment: 13 pages, 4 figures, RevTe

    Incremental expansions for Hubbard-Peierls systems

    Full text link
    The ground state energies of infinite half-filled Hubbard-Peierls chains are investigated combining incremental expansion with exact diagonalization of finite chain segments. The ground state energy of equidistant infinite Hubbard (Heisenberg) chains is calculated with a relative error of less than 3⋅10−33 \cdot 10^{-3} for all values of UU using diagonalizations of 12-site (20-site) chain segm ents. For dimerized chains the dimerization order parameter dd as a function of the onsite repulsion interaction UU has a maximum at nonzero values of UU, if the electron-phonon coupling gg is lower than a critical value gcg_c. The critical value gcg_c is found with high accuracy to be gc=0.69g_c=0.69. For smaller values of gg the position of the maximum of d(U)d(U) is approximately 3t3t, and rapidly tends to zero as gg approaches gcg_c from below. We show how our method can be applied to calculate breathers for the problem of phonon dynamics in Hubbard-Peierls systems.Comment: 4 Pages, 3 Figures, REVTE

    Phonons in the multiferroic langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} : evidences for symmetry breaking

    Get PDF
    The chiral langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} is a multiferroic compound. While its magnetic order below T_N\_N=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature dependence to unravel possible crystal symmetry breaking. We combined optical measurements (both infrared and Raman spectroscopy) with ab initio calculations and show that signatures of a polar state are clearly present in the phonon spectrum even at room temperature. An additional symmetry lowering occurs below 120~K as seen from emergence of softer phonon modes in the THz range. These results confirm the multiferroic nature of this langasite and open new routes to understand the origin of the polar state

    Accurate and linear time pose estimation from points and lines

    Get PDF
    The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms, the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft

    Perceptual Context in Cognitive Hierarchies

    Full text link
    Cognition does not only depend on bottom-up sensor feature abstraction, but also relies on contextual information being passed top-down. Context is higher level information that helps to predict belief states at lower levels. The main contribution of this paper is to provide a formalisation of perceptual context and its integration into a new process model for cognitive hierarchies. Several simple instantiations of a cognitive hierarchy are used to illustrate the role of context. Notably, we demonstrate the use context in a novel approach to visually track the pose of rigid objects with just a 2D camera

    Real space renormalization group approach to the 2d antiferromagnetic Heisenberg model

    Full text link
    The low energy behaviour of the 2d antiferromagnetic Heisenberg model is studied in the sector with total spins S=0,1,2S=0,1,2 by means of a renormalization group procedure, which generates a recursion formula for the interaction matrix ΔS(n+1)\Delta_S^{(n+1)} of 4 neighbouring "nn clusters" of size 2n×2n2^n\times 2^n, n=1,2,3,...n=1,2,3,... from the corresponding quantities ΔS(n)\Delta_S^{(n)}. Conservation of total spin SS is implemented explicitly and plays an important role. It is shown, how the ground state energies ES(n+1)E_S^{(n+1)}, S=0,1,2S=0,1,2 approach each other for increasing nn, i.e. system size. The most relevant couplings in the interaction matrices are generated by the transitions between the ground states ∣S,m;n+1>|S,m;n+1> (m=−S,...,Sm=-S,...,S) on an (n+1)(n+1)-cluster of size 2n+1×2n+12^{n+1}\times 2^{n+1}, mediated by the staggered spin operator Sq∗S_q^*Comment: 18 pages, 8 figures, RevTe
    • …
    corecore