61,115 research outputs found
Single crystal growth and physical properties of SrFe(AsP)
We report a crystal growth and physical properties of
SrFe(AsP). The single crystals for various s were
grown by a self flux method. For , reaches the maximum value of
30\,K and the electrical resistivity () shows -linear dependence.
As increases, decreases and () changes to -behavior,
indicating a standard Fermi liquid. These results suggest that a magnetic
quantum critical point exists around .Comment: 4 pages, 4 figures, accepted to Supplemental issue of the Journal of
Physical Society of Japan (JPSJ
Exotic Topological States with Raman-Induced Spin-Orbit Coupling
We propose a simple experimental scheme to realize simultaneously the
one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold
pseudospin- atomic Fermi gases trapped in square optical lattices. In the
absence of interspecies interactions, the system supports gapped Chern
insulators and gapless topological semimetal states. By turning on the -wave
interactions, a rich variety of gapped and gapless inhomogeneous topological
superfluids can emerge. In particular, a gapped topological Fulde-Ferrell
superfluid, in which the chiral edge states at opposite boundaries possess the
same chirality, is predicted.Comment: 11 pages, 6 figure
Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood
Two distinct halo populations were found in the solar neighborhood by a
series of works. They can be clearly separated by [alpha\Fe] and several other
elemental abundance ratios including [Cu/Fe]. Very recently, a non-local
thermodynamic equilibrium (non-LTE) study revealed that relatively large
departures exist between LTE and non-LTE results in copper abundance analysis.
We aim to derive the copper abundances for the stars from the sample of Nissen
et al (2010) with both LTE and non-LTE calculations. Based on our results, we
study the non-LTE effects of copper and investigate whether the high-alpha
population can still be distinguished from the low-alpha population in the
non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the
high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs.
Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis
method, we derive the non-LTE copper abundances based on the new atomic model
with current atomic data obtained from both laboratory and theoretical
calculations. The copper abundances determined from non-LTE calculations are
increased by 0.01 to 0.2 dex depending on the stellar parameters compared with
the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in
the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into
consideration, the high- and low-alpha stars still show distinguishable copper
abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus
[Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor
stars. Our results confirmed that there are two distinct halo populations in
the solar neighborhood. The dichotomy in copper abundance is a peculiar feature
of each population, suggesting that they formed in different environments and
evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table
Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming
The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints
Recommended from our members
Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines
A carbon dioxide (CO2) based mixture was investigated as a promising solution to improve system performance and expand the condensation temperature range of a CO2 transcritical Rankine cycle (C-TRC). An experimental study of TRC using CO2/R134a mixtures was performed to recover waste heat of engine coolant and exhaust gas from a heavy-duty diesel engine. The main purpose of this study was to investigate experimentally the effect of the composition ratio of CO2/R134a mixtures on system performance. Four CO2/R134a mixtures with mass composition ratios of 0.85/0.15, 0.7/0.3, 0.6/0.4 and 0.4/0.6 were selected. The high temperature working fluid was expanded through an expansion valve and then no power was produced. Thus, current research focused on the analysis of measured operating parameters and heat exchanger performance. Heat transfer coefficients of various heat exchangers using supercritical CO2/R134a mixtures were provided and discussed. These data may provide useful reference for cycle optimization and heat exchanger design in application of CO2 mixtures. Finally, the potential of power output was estimated numerically. Assuming an expander efficiency of 0.7, the maximum estimations of net power output using CO2/R134a (0.85/0.15), CO2/R134a (0.7/0.3), CO2/R134a (0.6/0.4) and CO2/R134a (0.4/0.6) are 5.07 kW, 5.45 kW, 5.30 kW, and 4.41 kW, respectively. Along with the increase of R134a composition, the estimation of net power output, thermal efficiency and exergy efficiency increased at first and then decreased. CO2/R134a (0.7/0.3) achieved the maximum net power output at a high expansion inlet pressure, while CO2/R134a (0.6/0.4) behaves better at low pressure
- …