4,090 research outputs found

    Deformed quantum mechanics and q-Hermitian operators

    Full text link
    Starting on the basis of the non-commutative q-differential calculus, we introduce a generalized q-deformed Schr\"odinger equation. It can be viewed as the quantum stochastic counterpart of a generalized classical kinetic equation, which reproduces at the equilibrium the well-known q-deformed exponential stationary distribution. In this framework, q-deformed adjoint of an operator and q-hermitian operator properties occur in a natural way in order to satisfy the basic quantum mechanics assumptions.Comment: 10 page

    Multiple-Scale Analysis of the Quantum Anharmonic Oscillator

    Get PDF
    Conventional weak-coupling perturbation theory suffers from problems that arise from resonant coupling of successive orders in the perturbation series. Multiple-scale perturbation theory avoids such problems by implicitly performing an infinite reordering and resummation of the conventional perturbation series. Multiple-scale analysis provides a good description of the classical anharmonic oscillator. Here, it is extended to study the Heisenberg operator equations of motion for the quantum anharmonic oscillator. The analysis yields a system of nonlinear operator differential equations, which is solved exactly. The solution provides an operator mass renormalization of the theory.Comment: 12 pages, Revtex, no figures, available through anonymous ftp from ftp://euclid.tp.ph.ic.ac.uk/papers/ or on WWW at http://euclid.tp.ph.ic.ac.uk/Papers/papers_95-6_.htm

    Improving Outcomes from Breast Cancer in a Low-Income Country: Lessons from Bangladesh

    Get PDF
    Women in low- and middle-income countries (LMICs) have yet to benefit from recent advances in breast cancer diagnosis and treatment now experienced in high-income countries. Their unique sociocultural and health system circumstances warrant a different approach to breast cancer management than that applied to women in high-income countries. Here, we present experience from the last five years working in rural Bangladesh. Case and consecutive series data, focus group and individual interviews, and clinical care experience provide the basis for this paper. These data illustrate a complex web of sociocultural, economic, and health system conditions which affect womens' choices to seek and accept care and successful treatment. We conclude that health system, human rights, and governance issues underlie high mortality from this relatively rare disease in Bangladesh

    The Context-Freeness Problem Is coNP-Complete for Flat Counter Systems

    Get PDF
    International audienceBounded languages have recently proved to be an important class of languages for the analysis of Turing-powerful models. For instance, bounded context-free languages are used to under-approximate the behav-iors of recursive programs. Ginsburg and Spanier have shown in 1966 that a bounded language L ⊆ a * 1 · · · a * d is context-free if, and only if, its Parikh image is a stratifiable semilinear set. However, the question whether a semilinear set is stratifiable, hereafter called the stratifiability problem, was left open, and remains so. In this paper, we give a partial answer to this problem. We focus on semilinear sets that are given as finite systems of linear inequalities, and we show that stratifiability is coNP-complete in this case. Then, we apply our techniques to the context-freeness problem for flat counter systems, that asks whether the trace language of a counter system intersected with a bounded regular language is context-free. As main result of the paper, we show that this problem is coNP-complete

    VLASSICK: The VLA Sky Survey in the Central Kiloparsec

    Full text link
    At a distance of 8 kpc, the center of our Galaxy is the nearest galactic nucleus, and has been the subject of numerous key projects undertaken by great observatories such as Chandra, Spitzer, and Herschel. However, there are still no surveys of molecular gas properties in the Galactic center with less than 30" (1 pc) resolution. There is also no sensitive polarization survey of this region, despite numerous nonthermal magnetic features apparently unique to the central 300 parsecs. In this paper, we outline the potential the VLASS has to fill this gap. We assess multiple considerations in observing the Galactic center, and recommend a C-band survey with 10 micro-Jy continuum RMS and sensitive to molecular gas with densities greater than 10^4 cm^{-3}, covering 17 square degrees in both DnC and CnB configurations ( resolution ~5"), totaling 750 hours of observing time. Ultimately, we wish to note that the upgraded VLA is not just optimized for fast continuum surveys, but has a powerful correlator capable of simultaneously observing continuum emission and dozens of molecular and recombination lines. This is an enormous strength that should be fully exploited and highlighted by the VLASS, and which is ideally suited for surveying the center of our Galaxy.Comment: 13 pages, 3 figures, a White Paper submitted to provide input in planning the Very Large Array Sky Surve

    Interprocedural Reachability for Flat Integer Programs

    Full text link
    We study programs with integer data, procedure calls and arbitrary call graphs. We show that, whenever the guards and updates are given by octagonal relations, the reachability problem along control flow paths within some language w1* ... wd* over program statements is decidable in Nexptime. To achieve this upper bound, we combine a program transformation into the same class of programs but without procedures, with an Np-completeness result for the reachability problem of procedure-less programs. Besides the program, the expression w1* ... wd* is also mapped onto an expression of a similar form but this time over the transformed program statements. Several arguments involving context-free grammars and their generative process enable us to give tight bounds on the size of the resulting expression. The currently existing gap between Np-hard and Nexptime can be closed to Np-complete when a certain parameter of the analysis is assumed to be constant.Comment: 38 pages, 1 figur

    Slow group velocity and Cherenkov radiation

    Get PDF
    We theoretically study the effect of ultraslow group velocities on the emission of Vavilov-Cherenkov radiation in a coherently driven medium. We show that in this case the aperture of the group cone on which the intensity of the radiation peaks is much smaller than that of the usual wave cone associated with the Cherenkov coherence condition. We show that such a singular behaviour may be observed in a coherently driven ultracold atomic gas.Comment: 4 pages, 4 figure

    Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    Full text link
    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Breakdown of the surface barrier against magnetic flux penetration at the cavity equator is considered to be the critical event that determines the onset of Q-drop. The worst case of triangular grooves with low field of first flux penetration Hp, as analyzed previously by Buzdin and Daumens, [1998 Physica C 294: 257], was adapted. This approach incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa, so the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hp when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. When in combination, contamination exacerbates the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~30%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.Comment: 15 pages with 7 figure

    Computational Complexity of Atomic Chemical Reaction Networks

    Full text link
    Informally, a chemical reaction network is "atomic" if each reaction may be interpreted as the rearrangement of indivisible units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity of deciding whether a given network is atomic according to each of these definitions. Our first definition, primitive atomic, which requires each reaction to preserve the total number of atoms, is to shown to be equivalent to mass conservation. Since it is known that it can be decided in polynomial time whether a given chemical reaction network is mass-conserving, the equivalence gives an efficient algorithm to decide primitive atomicity. Another definition, subset atomic, further requires that all atoms are species. We show that deciding whether a given network is subset atomic is in NP\textsf{NP}, and the problem "is a network subset atomic with respect to a given atom set" is strongly NP\textsf{NP}-Complete\textsf{Complete}. A third definition, reachably atomic, studied by Adleman, Gopalkrishnan et al., further requires that each species has a sequence of reactions splitting it into its constituent atoms. We show that there is a polynomial-time algorithm\textbf{polynomial-time algorithm} to decide whether a given network is reachably atomic, improving upon the result of Adleman et al. that the problem is decidable\textbf{decidable}. We show that the reachability problem for reachably atomic networks is Pspace\textsf{Pspace}-Complete\textsf{Complete}. Finally, we demonstrate equivalence relationships between our definitions and some special cases of another existing definition of atomicity due to Gnacadja
    • 

    corecore