134 research outputs found

    Governments, decentralisation, and the risk of electoral defeat

    Get PDF
    <p>In the last three decades several countries around the world have transferred authority from their national to their regional governments. However, not all their regions have been empowered to the same degree and important differences can be observed between and within countries. Why do some regions obtain more power than others? Current literature argues that variation in the redistribution of power and resources between regions is introduced by demand. Yet these explanations are conditional on the presence of strong regionalist parties or territorial cleavages. This article proposes instead a theory that links the government’s risk of future electoral defeat with heterogeneous decentralisation, and tests its effects using data from 15 European countries and 141 regions. The results provide evidence that parties in government protect themselves against the risk of electoral defeat by selectively targeting decentralisation towards regions in which they are politically strong. The findings challenge previous research that overestimates the importance of regionalist parties while overlooking differences between regions.</p

    Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance)

    Get PDF
    Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For most individuals there are no known risk factors that predispose patients to the adverse event, and pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there is a heritable component to paclitaxel induced peripheral neuropathy would be valuable in guiding clinical decisions and may provide insight into treatment of and mechanisms for the toxicity. Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients

    Single Molecule PCR Reveals Similar Patterns of Non-Homologous DSB Repair in Tobacco and Arabidopsis

    Get PDF
    DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1–20 bp) deletions occurred at a minority (25–45%) of repair junctions. Approximately ∼1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ

    A Cell-Free Microtiter Plate Screen for Improved [FeFe] Hydrogenases

    Get PDF
    , a potential renewable fuel. Attempts to exploit these catalysts in engineered systems have been hindered by the biotechnologically inconvenient properties of the natural enzymes, including their extreme oxygen sensitivity. Directed evolution has been used to improve the characteristics of a range of natural catalysts, but has been largely unsuccessful for [FeFe] hydrogenases because of a lack of convenient screening platforms. [FeFe] hydrogenase HydA1 with a specific activity ∼4 times that of the wild-type enzyme. cell extracts, which allows unhindered access to the protein maturation and assay environment

    Novel Colicin F-Y of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation

    Get PDF
    A novel colicin type, designated colicin F-Y, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin F-Y was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin F-Y activity gene (cfyA) and the colicin F-Y immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin F-Y was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin F-Y-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin F-Y receptor molecule. Introduction of the yiuR gene into the colicin F-Y-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin F-Y. In contrast, the colicin F-Y-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin F-Y only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins F-Y and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin F-Y and colicin Ib producers suggest a common evolutionary origin of the colicin F-Y-YiuR and colicin Ib-Cir systems

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions

    Full text link
    corecore