23 research outputs found

    Severe Impact and Subsequent Recovery of a Coral Assemblage following the 1997–8 El Niño Event: A 17-Year Study from Bahia, Brazil

    Get PDF
    The coral reefs of northern Bahia evolved in isolation from other Atlantic systems and under conditions of high environmental stress, particularly high turbidity. We have monitored the scleractinian assemblage of four shallow bank reefs (Praia do Forte, Itacimirim, Guarajuba and Abai) annually for 17 years since 1995, collecting quantitative data on diversity and density of coral colonies. As the sampling period included the 1997-8 El Niño event, the most severe on record, for the first time these results allow a quantitative assessment of the long-term impact of this major environmental stressor on such a coral assemblage. After El Niño, most species showed significantly reduced densities of colonies, this decline occurring for the subsequent two years without evidence of any new settlement until 2001. From 2000 to 2007 the species Porites astreoides went unrecorded. Recovery was slow, and multivariate analysis revealed that assemblages had not returned to the pre-El Niño state until 2011. It therefore took 13 years for full recovery of the coral assemblage to occur, which has consequences for reef systems if such El-Niño events become more frequent in the future

    Strain Variation in Mycobacterium marinum Fish Isolates

    No full text
    A molecular characterization of two Mycobacterium marinum genes, 16S rRNA and hsp65, was carried out with a total of 21 isolates from various species of fish from both marine and freshwater environments of Israel, Europe, and the Far East. The nucleotide sequences of both genes revealed that all M. marinum isolates from fish in Israel belonged to two different strains, one infecting marine (cultured and wild) fish and the other infecting freshwater (cultured) fish. A restriction enzyme map based on the nucleotide sequences of both genes confirmed the divergence of the Israeli marine isolates from the freshwater isolates and differentiated the Israeli isolates from the foreign isolates, with the exception of one of three Greek isolates from marine fish which was identical to the Israeli marine isolates. The second isolate from Greece exhibited a single base alteration in the 16S rRNA sequence, whereas the third isolate was most likely a new Mycobacterium species. Isolates from Denmark and Thailand shared high sequence homology to complete identity with reference strain ATCC 927. Combined analysis of the two gene sequences increased the detection of intraspecific variations and was thus of importance in studying the taxonomy and epidemiology of this aquatic pathogen. Whether the Israeli M. marinum strain infecting marine fish is endemic to the Red Sea and found extremely susceptible hosts in the exotic species imported for aquaculture or rather was accidentally introduced with occasional imports of fingerlings from the Mediterranean Sea could not be determined

    Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals

    No full text
    During the past several decades, numerous reports from disparate geographical areas have documented an increased frequency of “bleaching” in reef-forming corals. The phenomenon, triggered by increased sea surface temperatures, occurs when the cnidarian hosts digest and/or expel their intracellular, photosynthetic dinoflagellate symbionts (“zooxanthellae” in the genus Symbiodinium). Although coral bleaching is often followed by the death of the animal hosts, in some cases, the animal survives and can be repopulated with viable zooxanthellae. The physiological factors determining the ability of the coral to survive bleaching events are poorly understood. In this study, we experimentally established that bleaching and death of the host animal involve a caspase-mediated apoptotic cascade induced by reactive oxygen species produced primarily by the algal symbionts. In addition, we demonstrate that, although some corals naturally suppress caspase activity and significantly reduce caspase concentration under high temperatures as a mechanism to prevent colony death from apoptosis, even sensitive corals can be prevented from dying by application of exogenous inhibitors of caspases. Our results indicate that variability in response to thermal stress in corals is determined by a four-element, combinatorial genetic matrix intrinsic to the specific symbiotic association. Based on our experimental data, we present a working model in which the phenotypic expression of this symbiont/host relationship places a selective pressure on the symbiotic association. The model predicts the survival of the host animals in which the caspase-mediated apoptotic cascade is down-regulated
    corecore