24 research outputs found
Secondary omental and pectoralis major double flap reconstruction following aggressive sternectomy for deep sternal wound infections after cardiac surgery
<p>Abstract</p> <p>Background</p> <p>Deep sternal wound infection after cardiac surgery carries high morbidity and mortality. Our strategy for deep sternal wound infection is aggressive strenal debridement followed by vacuum-assisted closure (VAC) therapy and omental-muscle flap reconstrucion. We describe this strategy and examine the outcome and long-term quality of life (QOL) it achieves.</p> <p>Methods</p> <p>We retrospectively examined 16 patients treated for deep sternal wound infection between 2001 and 2007. The most recent nine patients were treated with total sternal resection followed by VAC therapy and secondary closure with omental-muscle flap reconstruction (recent group); whereas the former seven patients were treated with sternal preservation if possible, without VAC therapy, and four of these patients underwent primary closure (former group). We assessed long-term quality of life after DSWI by using the Short Form 36-Item Health Survey, Version 2 (SF36v2).</p> <p>Results</p> <p>One patient died and four required further surgery for recurrence of deep sternal wound infection in the former group. The duration of treatment for deep sternal wound infection in the recent group was significantly shorter than that in previous group (63.4 ± 54.1 days vs. 120.0 ± 31.8 days, respectively; p = 0.039). Despite aggressive sternal resection, the QOL of patients treated for DSWI was only minimally compromised compared with age-, sex-, surgical procedures-matched patients without deep sternal wound infection.</p> <p>Conclusions</p> <p>Aggressive sternal debridement followed by VAC therapy and secondary closure with an omental-muscle flap is effective for deep sternal wound infection. In this series, it resulted in a lower incidence of recurrent infection, shorter hospitalization, and it did not compromise long-term QOL greatly.</p
Diabetic Impairment of C-Kit+ Bone Marrow Stem Cells Involves the Disorders of Inflammatory Factors, Cell Adhesion and Extracellular Matrix Molecules
Bone marrow stem cells from diabetes mellitus patients exhibit functional impairment, but the relative molecular mechanisms responsible for this impairment are poorly understood. We investigated the mechanisms responsible for diabetes-related functional impairment of bone marrow stem cells by extensively screening the expression levels of inflammatory factors, cell cycle regulating molecules, extracellular matrix molecules and adhesion molecules. Bone marrow cells were collected from type 2 diabetic (db/db) and healthy control (db/m+) mice, and c-kit+ stem cells were purified (purity>85%) for experiments. Compared with the healthy control mice, diabetic mice had significantly fewer c-kit+ stem cells, and these cells had a lower potency of endothelial differentiation; however, the production of the angiogenic growth factor VEGF did not differ between groups. A pathway-focused array showed that the c-kit+ stem cells from diabetic mice had up-regulated expression levels of many inflammatory factors, including Tlr4, Cxcl9, Il9, Tgfb1, Il4, and Tnfsf5, but no obvious change in the expression levels of cell cycle molecules. Interestingly, diabetes-related alterations of the extracellular matrix and adhesion molecules were varied; Pecam, Mmp10, Lamc1, Itgb7, Mmp9, and Timp4 were up-regulated, but Col11a1, Fn1, Admts2, and Itgav were down-regulated. Some of these changes were also confirmed at the protein level by flow cytometry analysis. In conclusion, c-kit+ bone marrow stem cells from diabetic mice exhibited an extensive enhancement of inflammatory factors and disorders of the extracellular matrix and adhesion molecules. Further intervention studies are required to determine the precise role of each molecule in the diabetes-related functional impairment of c-kit+ bone marrow stem cells
The Effects of Mechanical Stress on the Growth, Differentiation, and Paracrine Factor Production of Cardiac Stem Cells
Stem cell therapies have been clinically employed to repair the injured heart, and cardiac stem cells are thought to be one of the most potent stem cell candidates. The beating heart is characterized by dynamic mechanical stresses, which may have a significant impact on stem cell therapy. The purpose of this study is to investigate how mechanical stress affects the growth and differentiation of cardiac stem cells and their release of paracrine factors. In this study, human cardiac stem cells were seeded in a silicon chamber and mechanical stress was then induced by cyclic stretch stimulation (60 cycles/min with 120% elongation). Cells grown in non-stretched silicon chambers were used as controls. Our result revealed that mechanical stretching significantly reduced the total number of surviving cells, decreased Ki-67-positive cells, and increased TUNEL-positive cells in the stretched group 24 hrs after stretching, as compared to the control group. Interestingly, mechanical stretching significantly increased the release of the inflammatory cytokines IL-6 and IL-1β as well as the angiogenic growth factors VEGF and bFGF from the cells in 12 hrs. Furthermore, mechanical stretching significantly reduced the percentage of c-kit-positive stem cells, but increased the expressions of cardiac troponin-I and smooth muscle actin in cells 3 days after stretching. Using a traditional stretching model, we demonstrated that mechanical stress suppressed the growth and proliferation of cardiac stem cells, enhanced their release of inflammatory cytokines and angiogenic factors, and improved their myogenic differentiation. The development of this in vitro approach may help elucidate the complex mechanisms of stem cell therapy for heart failure
Seasonal variation of non-shivering thermogenesis (NST) during mild cold exposure
Background: The physiological function of non-shivering thermogenesis (NST) has been investigated in recent years, and some studies have discussed the importance of NST with respect to human cold adaptation. The present study aimed to clarify individual and seasonal variations in NST that occurred as a result of mild cold exposure.Methods: Seventeen male university students participated in the present study during summer and winter. The climate chamber used was programmed so that ambient temperature dropped from 28°C to 16°C over an 80-min period. Physiological parameters of test subjects were recorded during the experiments.Results: Increases in oxygen intake (VO2) during cold exposure were significantly greater without shivering in winter than they were in summer. Respiratory exchange ratio (RER) was significantly lower during thermoneutral baseline and cold exposure in winter than it was during the same periods in summer. In addition, there was a significant negative correlation between ΔVO2 and ΔRER.Conclusions: Increase of VO2 without shivering indicated increase of NST, and decrease of RER depends on the metabolization of fat in winter. These results suggested that NST activity was activated by seasonal acclimatization, and individual variation of NST depends on individual variation of fat metabolism