1,206 research outputs found
Health Sciences Collection Development: An Overview of Fundamental Knowledge and Practices (2nd Edition)
This Open Access work from the Medical Library Association Collection Development Caucus provides an overview of the responsibilities and tasks involved in the development and management of health sciences collections. Readers can explore topics in greater detail through references at the end of each chapter.
You can access the most up-to-date version of this work at https://doi.org/10.21974/1tsq-na6
Formin-based control of the actin cytoskeleton during cytokinesis
Cytokinesis, the terminal event in the canonical cell cycle, physically separates daughter cells following mitosis. For cleavage to occur in many eukaryotes, a cytokinetic ring must assemble and constrict between divided genomes. Although dozens of different molecules localize to and participate within the cytokinetic ring, the core machinery comprises linear actin filaments. Accordingly, formins, which nucleate and elongate F-actin (filamentous actin) for the cytokinetic ring, are required for cytokinesis in diverse species. In the present article, we discuss specific modes of formin-based actin regulation during cell division and highlight emerging mechanisms and questions on this topic. © 2013 Biochemical Society
SIN-dependent phosphoinhibition of formin multimerization controls fission yeast cytokinesis
Many eukaryotes accomplish cell division by building and constricting a medial actomyosin-based cytokinetic ring (CR). In Schizosaccharomyces pombe, a Hippo-related signaling pathway termed the septation initiation network (SIN) controls CR formation, maintenance, and constriction. However, how the SIN regulates integral CR components was unknown. Here, we identify the essential cytokinetic formin Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation leads to persistent Cdc12 clustering, which prevents CR assembly in the absence of anillin-like Mid1 and causes CRs to collapse when cytokinesis is delayed. Molecularly, Sid2 phosphorylation of Cdc12 abrogates multimerization of a previously unrecognized Cdc12 domain that confers F-actin bundling activity. Taken together, our findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division. © 2013 Bohnert et al
Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium
Background<p></p>
Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.<p></p>
Methods and Results<p></p>
We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).<p></p>
Conclusion<p></p>
Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings
Oscillations above the barrier in the fusion of 28Si + 28Si
Fusion cross sections of 28Si + 28Si have been measured in a range above the
barrier with a very small energy step (DeltaElab = 0.5 MeV). Regular
oscillations have been observed, best evidenced in the first derivative of the
energy-weighted excitation function. For the first time, quite different
behaviors (the appearance of oscillations and the trend of sub-barrier cross
sections) have been reproduced within the same theoretical frame, i.e., the
coupled-channel model using the shallow M3Y+repulsion potential. The
calculations suggest that channel couplings play an important role in the
appearance of the oscillations, and that the simple relation between a peak in
the derivative of the energy-weighted cross section and the height of a
centrifugal barrier is lost, and so is the interpretation of the second
derivative of the excitation function as a barrier distribution for this
system, at energies above the Coulomb barrier.Comment: submitted to Physics Letters
Elastic scattering and breakup of 17^F at 10 MeV/nucleon
Angular distributions of fluorine and oxygen produced from 170 MeV 17^F
incident on 208^Pb were measured. The elastic scattering data are in good
agreement with optical model calculations using a double-folding potential and
parameters similar to those obtained from 16^O+208^Pb. A large yield of oxygen
was observed near \theta_lab=36 deg. It is reproduced fairly well by a
calculation of the (17^F,16^O) breakup, which is dominated by one-proton
stripping reactions. The discrepancy between our previous coincidence
measurement and theoretical predictions was resolved by including core
absorption in the present calculation.Comment: 9 pages, 5 figure
Dual-Wavelength Imaging of Tumor Progression by Activatable and Targeting Near-Infrared Fluorescent Probes in a Bioluminescent Breast Cancer Model
Bioluminescence imaging (BLI) has shown its appeal as a sensitive technique for in vivo whole body optical imaging. However, the development of injectable tumor-specific near-infrared fluorescent (NIRF) probes makes fluorescence imaging (FLI) a promising alternative to BLI in situations where BLI cannot be used or is unwanted (e.g., spontaneous transgenic tumor models, or syngeneic mice to study immune effects)
Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang
This study provides further evidence for the impact of the aromas of plant essential oils on aspects of cognition and mood in healthy participants. One hundred and forty-four volunteers were randomly assigned to conditions of ylang-ylang aroma, peppermint aroma, or no aroma control. Cognitive performance was assessed using the Cognitive Drug Research computerized assessment battery, with mood scales completed before and after cognitive testing. The analysis of the data revealed significant differences between conditions on a number of the factors underpinning the tests that constitute the battery. Peppermint was found to enhance memory whereas ylang-ylang impaired it, and lengthened processing speed. In terms of subjective mood peppermint increased alertness and ylang-ylang decreased it, but significantly increased calmness. These results provide support for the contention that the aromas of essential oils can produce significant and idiosyncratic effects on both subjective and objective assessments of aspects of human behavior. They are discussed with reference to possible pharmacological and psychological modes of influence
- …