4,372 research outputs found
CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions
Thermal stability factor (delta) of recording layer was studied in
perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with
various CoFeB recording layer thicknesses and junction sizes. In all series of
p-MTJs with different thicknesses, delta is virtually independent of the
junction sizes of 48-81 nm in diameter. The values of delta increase linearly
with increasing the recording layer thickness. The slope of the linear fit is
explained well by a model based on nucleation type magnetization reversal.Comment: 12 pages, 5 figure
Large thermal Hall coefficient in bismuth
We present a systematical study of thermal Hall effect on a bismuth single
crystal by measuring resistivity, Hall coefficient, and thermal conductivity
under magnetic field, which shows a large thermal Hall coefficient comparable
to the largest one in a semiconductor HgSe. We discuss that this is mainly due
to a large mobility and a low thermal conductivity comparing theoretical
calculations, which will give a route for controlling heat current in
electronic devices.Comment: 4pages, 3 figure
Theoretical study of kinks on screw dislocation in silicon
Theoretical calculations of the structure, formation and migration of kinks
on a non-dissociated screw dislocation in silicon have been carried out using
density functional theory calculations as well as calculations based on
interatomic potential functions. The results show that the structure of a
single kink is characterized by a narrow core and highly stretched bonds
between some of the atoms. The formation energy of a single kink ranges from
0.9 to 1.36 eV, and is of the same order as that for kinks on partial
dislocations. However, the kinks migrate almost freely along the line of an
undissociated dislocation unlike what is found for partial dislocations. The
effect of stress has also been investigated in order to compare with previous
silicon deformation experiments which have been carried out at low temperature
and high stress. The energy barrier associated with the formation of a stable
kink pair becomes as low as 0.65 eV for an applied stress on the order of 1
GPa, indicating that displacements of screw dislocations likely occur via
thermally activated formation of kink pairs at room temperature
Fundamental and clinical evaluation of "SCC RIABEAD" kit for immuno radiometric assay of squamous cell carcinoma related antigen.
Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and –resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs) and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m2) attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A – with cattle and no net; B – with cattle and protected by an untreated net; C – with cattle and protected by a deltamethrin-treated net; D – no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001) landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001) culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa
On the Formation of Copper Linear Atomic Suspended Chains
We report high resolution transmission electron microscopy and classical
molecular dynamics simulation results of mechanically stretching copper
nanowires conducting to linear atomic suspended chains (LACs) formation. In
contrast with some previous experimental and theoretical work in literature
that stated that the formation of LACs for copper should not exist our results
showed the existence of LAC for the [111], [110], and [100] crystallographic
directions, being thus the sequence of most probable occurence.Comment: 4 pages, 3 figure
Nanoscale Phenomenology from Visualizing Pair Formation Experiment
Recently, Gomes et al. [1] have visualized the gap formation in nanoscale
regions (NRs) above the critical temperature T_c in the high-T_c superconductor
Bi_2Sr_2CaCu_2O_{8+\delta}. It has been found that, as the temperature lowers,
the NRs expand in the bulk superconducting state consisted of inhomogeneities.
The fact that the size of the inhomogeneity [2] is close to the minimal size of
the NR [1] leads to a conclusion that the superconducting phase is a result of
these overlapped NRs. In the present paper we perform the charge and
percolation regime analysis of NRs and show that at the first critical doping
x_{c1}, when the superconductivity starts on, each NR carries the positive
electric charge one in units of electron charge, thus we attribute the NR to a
single hole boson, and the percolation lines connecting these bosons emerge. At
the second critical doping x_{c2}, when the superconductivity disappears, our
analysis demonstrates that the charge of each NR equals two. The origin of
x_{c2} can be understood by introducing additional normal phase hole fermions
in NRs, whose concentration appearing above x_{c1} increases smoothly with the
doping and breaks the percolation lines of bosons at x_{c2}. The last one
results in disappearing the bulk bosonic property of the pseudogap (PG) region,
which explains the upper bound for existence of vortices in Nernst effect [3].
Since [1] has demonstrated the absence of NRs at the PG boundary one can
conclude that along this boundary, as well as in x_{c2}, all bosons disappear.Comment: 4 pages, 1 figure. Good quality figure one can find in published
journal paper. Added 4 new references. Section of arXiv: 1010.043
Weak-Coupling Theory for Multiband Superconductivity Induced by Jahn-Teller Phonons
Emergence of superconductivity in a two-band system coupled with breathing
and Jahn-Teller phonons is discussed in a weak-coupling limit. With the use of
a standard quantum mechanical procedure, the phonon-mediated attraction is
derived. From the analysis of the model including such attraction, a BCS-like
formula for a superconducting transition temperature is obtained.
When only the breathing phonon is considered, is the same as that
of the one-band model. On the other hand, when Jahn-Teller phonons are active,
is significantly enhanced by the interband attraction even within
the weak-coupling limit. Relevance of the present result to actual materials
such as iron pnictides is briefly commented.Comment: 4 pages, 3 figures
- …