922 research outputs found

    Non-vanishing of LL-functions associated to cusp forms of half-integral weight

    Full text link
    In this article, we prove non-vanishing results for LL-functions associated to holomorphic cusp forms of half-integral weight on average (over an orthogonal basis of Hecke eigenforms). This extends a result of W. Kohnen to forms of half-integral weight.Comment: 8 pages, Accepted for publication in Oman conference proceedings (Springer

    Factorizing Numbers with the Gauss Sum Technique: NMR Implementations

    Get PDF
    Several physics-based algorithms for factorizing large number were recently published. A notable recent one by Schleich et al. uses Gauss sums for distinguishing between factors and non-factors. We demonstrate two NMR techniques that evaluate Gauss sums and thus implement their algorithm. The first one is based on differential excitation of a single spin magnetization by a cascade of RF pulses. The second method is based on spatial averaging and selective refocusing of magnetization for Gauss sums corresponding to factors. All factors of 16637 and 52882363 are successfully obtained.Comment: 4 pages, 4 figures; Abstract and Conclusion are slightly modified. References added and formatted with Bibte

    Keyword-Based Delegable Proofs of Storage

    Full text link
    Cloud users (clients) with limited storage capacity at their end can outsource bulk data to the cloud storage server. A client can later access her data by downloading the required data files. However, a large fraction of the data files the client outsources to the server is often archival in nature that the client uses for backup purposes and accesses less frequently. An untrusted server can thus delete some of these archival data files in order to save some space (and allocate the same to other clients) without being detected by the client (data owner). Proofs of storage enable the client to audit her data files uploaded to the server in order to ensure the integrity of those files. In this work, we introduce one type of (selective) proofs of storage that we call keyword-based delegable proofs of storage, where the client wants to audit all her data files containing a specific keyword (e.g., "important"). Moreover, it satisfies the notion of public verifiability where the client can delegate the auditing task to a third-party auditor who audits the set of files corresponding to the keyword on behalf of the client. We formally define the security of a keyword-based delegable proof-of-storage protocol. We construct such a protocol based on an existing proof-of-storage scheme and analyze the security of our protocol. We argue that the techniques we use can be applied atop any existing publicly verifiable proof-of-storage scheme for static data. Finally, we discuss the efficiency of our construction.Comment: A preliminary version of this work has been published in International Conference on Information Security Practice and Experience (ISPEC 2018

    Integral representations of q-analogues of the Hurwitz zeta function

    Full text link
    Two integral representations of q-analogues of the Hurwitz zeta function are established. Each integral representation allows us to obtain an analytic continuation including also a full description of poles and special values at non-positive integers of the q-analogue of the Hurwitz zeta function, and to study the classical limit of this q-analogue. All the discussion developed here is entirely different from the previous work in [4]Comment: 14 page

    Detecting brute-force attacks on cryptocurrency wallets

    Full text link
    Blockchain is a distributed ledger, which is protected against malicious modifications by means of cryptographic tools, e.g. digital signatures and hash functions. One of the most prominent applications of blockchains is cryptocurrencies, such as Bitcoin. In this work, we consider a particular attack on wallets for collecting assets in a cryptocurrency network based on brute-force search attacks. Using Bitcoin as an example, we demonstrate that if the attack is implemented successfully, a legitimate user is able to prove that fact of this attack with a high probability. We also consider two options for modification of existing cryptocurrency protocols for dealing with this type of attacks. First, we discuss a modification that requires introducing changes in the Bitcoin protocol and allows diminishing the motivation to attack wallets. Second, an alternative option is the construction of special smart-contracts, which reward the users for providing evidence of the brute-force attack. The execution of this smart-contract can work as an automatic alarm that the employed cryptographic mechanisms, and (particularly) hash functions, have an evident vulnerability.Comment: 10 pages, 2 figures; published versio

    Probing F-theory With Multiple Branes

    Get PDF
    We study multiple 3-branes on an F theory orientifold. The world-volume theory of the 3-branes is d=4, N=2 Sp(2k) gauge theory with an antisymmetric tensor and four flavors of matter in the fundamental. The solution of this gauge theory is found for vanishing bare mass of the antisymmetric tensor matter, and massive fundamental matter. The integrable system underlying this theory is constructed.Comment: 9 pages, harvma

    On rationality of the intersection points of a line with a plane quartic

    Full text link
    We study the rationality of the intersection points of certain lines and smooth plane quartics C defined over F_q. For q \geq 127, we prove the existence of a line such that the intersection points with C are all rational. Using another approach, we further prove the existence of a tangent line with the same property as soon as the characteristic of F_q is different from 2 and q \geq 66^2+1. Finally, we study the probability of the existence of a rational flex on C and exhibit a curious behavior when the characteristic of F_q is equal to 3.Comment: 17 pages. Theorem 2 now includes the characteristic 2 case; Conjecture 1 from the previous version is proved wron

    Gauss sum factorization with cold atoms

    Full text link
    We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193.Comment: 4 pages, 5 figure

    The Saito-Kurokawa lifting and Darmon points

    Full text link
    Let E_{/_\Q} be an elliptic curve of conductor NpNp with p∀Np\nmid N and let ff be its associated newform of weight 2. Denote by f∞f_\infty the pp-adic Hida family passing though ff, and by F∞F_\infty its Λ\Lambda-adic Saito-Kurokawa lift. The pp-adic family F∞F_\infty of Siegel modular forms admits a formal Fourier expansion, from which we can define a family of normalized Fourier coefficients {A~T(k)}T\{\widetilde A_T(k)\}_T indexed by positive definite symmetric half-integral matrices TT of size 2×22\times 2. We relate explicitly certain global points on EE (coming from the theory of Stark-Heegner points) with the values of these Fourier coefficients and of their pp-adic derivatives, evaluated at weight k=2k=2.Comment: 14 pages. Title change

    Factorization of Numbers with the temporal Talbot effect: Optical implementation by a sequence of shaped ultrashort pulses

    Full text link
    We report on the successful operation of an analogue computer designed to factor numbers. Our device relies solely on the interference of classical light and brings together the field of ultrashort laser pulses with number theory. Indeed, the frequency component of the electric field corresponding to a sequence of appropriately shaped femtosecond pulses is determined by a Gauss sum which allows us to find the factors of a number
    • 

    corecore