Two integral representations of q-analogues of the Hurwitz zeta function are
established. Each integral representation allows us to obtain an analytic
continuation including also a full description of poles and special values at
non-positive integers of the q-analogue of the Hurwitz zeta function, and to
study the classical limit of this q-analogue. All the discussion developed here
is entirely different from the previous work in [4]Comment: 14 page