961 research outputs found

    Giant magnetoimpedance in crystalline Mumetal

    Full text link
    We studied giant magnetoimpedance (GMI) effect in commercial crystalline Mumetal, with the emphasis to sample thickness dependence and annealing effects. By using appropriate heat treatment one can achieve GMI ratios as high as 310%, and field sensitivity of about 20%/Oe, which is comparable to the best GMI characteristics obtained for amorphous and nanocrystalline soft magnetic materials.Comment: 8 pages, 3 figure

    Structural and magnetic study of a dilute magnetic semiconductor: Fe doped CeO2 nanoparticles

    Full text link
    This paper reports the effect of Fe doping on the structure and room temperature ferromagnetism of CeO2 nanoparticles. X-ray diffraction and selective area electron diffraction measurement reflects that Ce1-xFexO2 (x = 0.0 - 0.07) nanoparticles exhibit single phase nature with cubic structure and none of the sample showed the presence of any secondary phase. The mean particle size calculated by using a transmission electron microscopy measurement was found to increase with increase in Fe content. DC magnetization measurements performed at room temperature indicates that all the samples exhibit ferromagnetism. The saturation magnetic moment has been found to increase with an increase in the Fe content.Comment: 16 Pages, 5 figure, 1 Table, Accepted in JN

    Response to a rabies epidemic in Bali, Indonesia

    Get PDF
    Emergency vaccinations and culling failed to contain an outbreak of rabies in Bali, Indonesia, during 2008–2009. Subsequent island-wide mass vaccination (reaching 70% coverage, >200,000 dogs) led to substantial declines in rabies incidence and spread. However, the incidence of dog bites remains high, and repeat campaigns are necessary to eliminate rabies in Bali

    The ATM signaling network in development and disease

    Get PDF
    The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease

    Strong coupling between single-electron tunneling and nano-mechanical motion

    Full text link
    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10^5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure

    Dynamical electron transport through a nanoelectromechanical wire in a magnetic field

    Full text link
    We investigate dynamical transport properties of interacting electrons moving in a vibrating nanoelectromechanical wire in a magnetic field. We have built an exactly solvable model in which electric current and mechanical oscillation are treated fully quantum mechanically on an equal footing. Quantum mechanically fluctuating Aharonov-Bohm phases obtained by the electrons cause nontrivial contribution to mechanical vibration and electrical conduction of the wire. We demonstrate our theory by calculating the admittance of the wire which are influenced by the multiple interplay between the mechanical and the electrical energy scales, magnetic field strength, and the electron-electron interaction

    Magnetic properties and giant magnetoresistance in melt‐spun Co‐Cu alloys

    Get PDF
    Magnetic, structural, and transport properties of as‐quenched and annealed Co10Cu90 samples have been investigated using x‐ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as‐quenched sample annealed at 450 °C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as‐quenched samples below 600 °C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin‐dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm

    A bioeconomic model for the optimization of local canine rabies control

    Get PDF
    We present a new modeling tool that can be used to maximize the impact of canine rabies management resources that are available at the local level. The model is accessible through a web-based interface that allows for flexibility in the management strategies that can be investigated. Rabies vaccination, sterilization, chemo-contraception, and euthanasia can be specified and limited to specific demographic groups. Additionally, we allowed for considerable complexity in the specification of management costs. In many areas, the costs of contacting additional dogs increases as management effort increases, and this can have important strategic implications. We illustrated the application of the model by examining several alternative management strategies in an area of Mpumalanga Province, South Africa. Our results based on this dog population suggested that puppies should be vaccinated and sterilization would not be optimal if the spatial extent of management is not large (and perhaps not even then). Furthermore, given a sufficient budget, it was evident that vaccination campaigns should be repeated annually

    A bioeconomic model for the optimization of local canine rabies control

    Get PDF
    We present a new modeling tool that can be used to maximize the impact of canine rabies management resources that are available at the local level. The model is accessible through a web-based interface that allows for flexibility in the management strategies that can be investigated. Rabies vaccination, sterilization, chemo-contraception, and euthanasia can be specified and limited to specific demographic groups. Additionally, we allowed for considerable complexity in the specification of management costs. In many areas, the costs of contacting additional dogs increases as management effort increases, and this can have important strategic implications. We illustrated the application of the model by examining several alternative management strategies in an area of Mpumalanga Province, South Africa. Our results based on this dog population suggested that puppies should be vaccinated and sterilization would not be optimal if the spatial extent of management is not large (and perhaps not even then). Furthermore, given a sufficient budget, it was evident that vaccination campaigns should be repeated annually

    Landau Level Crossings and Extended-State Mapping in Magnetic Two-dimensional Electron Gases

    Full text link
    We present longitudinal and Hall magneto-resistance measurements of a ``magnetic'' two-dimensional electron gas (2DEG) formed in modulation-doped Zn1−x−y_{1-x-y}Cdx_{x}Mny_{y}Se quantum wells. The electron spin splitting is temperature and magnetic field dependent, resulting in striking features as Landau levels of opposite spin cross near the Fermi level. Magnetization measurements on the same sample probe the total density of states and Fermi energy, allowing us to fit the transport data using a model involving extended states centered at each Landau level and two-channel conduction for spin-up and spin-down electrons. A mapping of the extended states over the whole quantum Hall effect regime shows no floating of extended states as Landau levels cross near the Fermi level.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
    • 

    corecore