1,562 research outputs found
Magnetic and Structural Studies of the Quasi-Two-Dimensional Spin-Gap System (CuCl)LaNb2O7
We report magnetization, nuclear magnetic resonance (NMR), nuclear quadrupole
resonance (NQR), and transmission electron microscopy (TEM) studies on the
quasi-two-dimensional spin-gap system (CuCl)LaNb2O7, a possible candidate for
the J1-J2 model on a square lattice. A sharp single NQR line is observed at the
Cu and Cl sites, indicating that both Cu and Cl atoms occupy a unique site.
However, the electric field gradient tensors at the Cu, Cl, and La sites do not
have axial symmetry. This is incompatible with the reported crystal structure.
Thus the J1-J2 model has to be modified. We propose alternative two-dimensional
dimer models based on the NMR, NQR, and TEM results. The value of the hyperfine
coupling constant at the Cu sites indicates that the spin density is mainly on
the d(3z2-r2) orbital (z parallel c). At 1.5 K, Cu- and Nb-NMR signals
disappear above the critical field Bc1 = 10.3 T determined from the onset of
the magnetization, indicating a field-induced magnetic phase transition at Bc1.Comment: 9 pages, 16 figure
Intermediate inflation and the slow-roll approximation
It is shown that spatially homogeneous solutions of the Einstein equations
coupled to a nonlinear scalar field and other matter exhibit accelerated
expansion at late times for a wide variety of potentials . These potentials
are strictly positive but tend to zero at infinity. They satisfy restrictions
on and related to the slow-roll approximation. These results
generalize Wald's theorem for spacetimes with positive cosmological constant to
those with accelerated expansion driven by potentials belonging to a large
class.Comment: 19 pages, results unchanged, additional backgroun
Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound
In many cases a nonlinear scalar field with potential can lead to
accelerated expansion in cosmological models. This paper contains mathematical
results on this subject for homogeneous spacetimes. It is shown that, under the
assumption that has a strictly positive minimum, Wald's theorem on
spacetimes with positive cosmological constant can be generalized to a wide
class of potentials. In some cases detailed information on late-time
asymptotics is obtained. Results on the behaviour in the past time direction
are also presented.Comment: 16 page
Closed cosmologies with a perfect fluid and a scalar field
Closed, spatially homogeneous cosmological models with a perfect fluid and a
scalar field with exponential potential are investigated, using dynamical
systems methods. First, we consider the closed Friedmann-Robertson-Walker
models, discussing the global dynamics in detail. Next, we investigate
Kantowski-Sachs models, for which the future and past attractors are
determined. The global asymptotic behaviour of both the
Friedmann-Robertson-Walker and the Kantowski-Sachs models is that they either
expand from an initial singularity, reach a maximum expansion and thereafter
recollapse to a final singularity (for all values of the potential parameter
kappa), or else they expand forever towards a flat power-law inflationary
solution (when kappa^2<2). As an illustration of the intermediate dynamical
behaviour of the Kantowski-Sachs models, we examine the cases of no barotropic
fluid, and of a massless scalar field in detail. We also briefly discuss
Bianchi type IX models.Comment: 15 pages, 10 figure
Late-time oscillatory behaviour for self-gravitating scalar fields
This paper investigates the late-time behaviour of certain cosmological
models where oscillations play an essential role. Rigorous results are proved
on the asymptotics of homogeneous and isotropic spacetimes with a linear
massive scalar field as source. Various generalizations are obtained for
nonlinear massive scalar fields, -essence models and gravity. The
effect of adding ordinary matter is discussed as is the case of nonlinear
scalar fields whose potential has a degenerate zero.Comment: 17 pages, additional reference
Recommended from our members
Global Analysis of Predicted G Protein-Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa.
G protein-coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not been functionally studied in any filamentous fungal species. Here, we analyze phenotypes in available mutants for 36 GPCR genes, including 20 Pth11-related, in the model filamentous fungus Neurospora crassa. We also investigate patterns of gene expression for all 43 predicted GPCR genes in available datasets. A total of 17 mutants (47%) possessed at least one growth or developmental phenotype. We identified 18 mutants (56%) with chemical sensitivity or nutritional phenotypes (11 uniquely), bringing the total number of mutants with at least one defect to 28 (78%), including 15 mutants (75%) in the Pth11-related class. Gene expression trends for GPCR genes correlated with the phenotypes observed for many mutants and also suggested overlapping functions for several groups of co-transcribed genes. Several members of the Pth11-related class have phenotypes and/or are differentially expressed on cellulose, suggesting a possible role for this gene family in plant cell wall sensing or utilization
Can Gravitational Waves Prevent Inflation?
To investigate the cosmic no hair conjecture, we analyze numerically
1-dimensional plane symmetrical inhomogeneities due to gravitational waves in
vacuum spacetimes with a positive cosmological constant. Assuming periodic
gravitational pulse waves initially, we study the time evolution of those waves
and the nature of their collisions. As measures of inhomogeneity on each
hypersurface, we use the 3-dimensional Riemann invariant and the electric and magnetic parts of
the Weyl tensor. We find a temporal growth of the curvature in the waves'
collision region, but the overall expansion of the universe later overcomes
this effect. No singularity appears and the result is a ``no hair" de Sitter
spacetime. The waves we study have amplitudes between and widths between ,
where , the horizon scale of de Sitter spacetime. This
supports the cosmic no hair conjecture.Comment: LaTeX, 11 pages, 3 figures are available on request <To
[email protected] (Hisa-aki SHINKAI)>, WU-AP/29/9
Energy Density of Non-Minimally Coupled Scalar Field Cosmologies
Scalar fields coupled to gravity via in arbitrary
Friedmann-Robertson-Walker backgrounds can be represented by an effective flat
space field theory. We derive an expression for the scalar energy density where
the effective scalar mass becomes an explicit function of and the scale
factor. The scalar quartic self-coupling gets shifted and can vanish for a
particular choice of . Gravitationally induced symmetry breaking and
de-stabilization are possible in this theory.Comment: 18 pages in standard Late
Can induced gravity isotropize Bianchi I, V, or IX Universes?
We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory
can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the
non--minimal coupling of gravity and the scalar field. The analytical results
that we found for the Brans-Dicke (BD) theory are now applied to the IG theory
which has ( being the square ratio of the Higgs to
Planck mass) in a cosmological era in which the IG--potential is not
significant. We find that the isotropization mechanism crucially depends on the
value of . Its smallness also permits inflationary solutions. For the
Bianch V model inflation due to the Higgs potential takes place afterwads, and
subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW
evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1
- …
