9,329 research outputs found
Power management and distribution considerations for a lunar base
Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process
A physiologically inspired model for solving the cocktail party problem.
At a cocktail party, we can broadly monitor the entire acoustic scene to detect important cues (e.g., our names being called, or the fire alarm going off), or selectively listen to a target sound source (e.g., a conversation partner). It has recently been observed that individual neurons in the avian field L (analog to the mammalian auditory cortex) can display broad spatial tuning to single targets and selective tuning to a target embedded in spatially distributed sound mixtures. Here, we describe a model inspired by these experimental observations and apply it to process mixtures of human speech sentences. This processing is realized in the neural spiking domain. It converts binaural acoustic inputs into cortical spike trains using a multi-stage model composed of a cochlear filter-bank, a midbrain spatial-localization network, and a cortical network. The output spike trains of the cortical network are then converted back into an acoustic waveform, using a stimulus reconstruction technique. The intelligibility of the reconstructed output is quantified using an objective measure of speech intelligibility. We apply the algorithm to single and multi-talker speech to demonstrate that the physiologically inspired algorithm is able to achieve intelligible reconstruction of an "attended" target sentence embedded in two other non-attended masker sentences. The algorithm is also robust to masker level and displays performance trends comparable to humans. The ideas from this work may help improve the performance of hearing assistive devices (e.g., hearing aids and cochlear implants), speech-recognition technology, and computational algorithms for processing natural scenes cluttered with spatially distributed acoustic objects.R01 DC000100 - NIDCD NIH HHSPublished versio
An analysis of space power system masses
Various space electrical power system masses are analyzed with particular emphasis on the power management and distribution (PMAD) portion. The electrical power system (EPS) is divided into functional blocks: source, interconnection, storage, transmission, distribution, system control and load. The PMAD subsystem is defined as all the blocks between the source, storage and load, plus the power conditioning equipment required for the source, storage and load. The EPS mass of a wide range of spacecraft is then classified as source, storage or PMAD and tabulated in a database. The intent of the database is to serve as a reference source for PMAD masses of existing and in-design spacecraft. The PMAD masses in the database range from 40 kg/kW to 183 kg/kW across the spacecraft systems studied. Factors influencing the power system mass are identified. These include the total spacecraft power requirements, total amount of load capacity and physical size of the spacecraft. It is found that a new utility class of power systems, represented by Space Station Freedom, is evolving
Preliminary design of a mobile lunar power supply
A preliminary design for a Stirling isotope power system for use as a mobile lunar power supply is presented. Performance and mass of the components required for the system are estimated. These estimates are based on power requirements and the operating environment. Optimizations routines are used to determine minimum mass operational points. Shielding for the isotope system are given as a function of the allowed dose, distance from the source, and the time spent near the source. The technologies used in the power conversion and radiator systems are taken from ongoing research in the Civil Space Technology Initiative (CSTI) program
Perangkap dalam Pembuatan Keputusan
Decision making is defined as the selection of a course of action from among alternatives; it is the core of planning. A plan cannot be said to exist unless a decision — a commitment of resources, direction, or reputation — has been made. Think back on the past decision has been made that caused considerable pain for the decision maker, it could be concluded that some of the biggest regrets come from faulty decision making. Sometimes the decision making process is relied on, so-called, "gut instincts", which could make the decision maker fall into the traps. This paper will give some insights into the most well-documented traps in decision making process
An investigation of children's peer trust across culture: is the composition of peer trust universal?
The components of children's trust in same-gender peers (trust beliefs, ascribed trustworthiness, and dyadic reciprocal trust) were examined in samples of 8- to 11-year-olds from the UK, Italy, and Japan. Trust was assessed by children's ratings of the extent to which same-gender classmates kept promises and kept secrets. Social relations analyses confirmed that children from each country showed significant: (a) actor variance demonstrating reliable individual differences in trust beliefs, (b) partner variance demonstrating reliable individual differences in ascribed trustworthiness, and (c ) relationship variance demonstrating unique relationships between interaction partners. Cultural differences in trust beliefs and ascribed trustworthiness also emerged and these differences were attributed to the tendency for children from cultures that value societal goals to share personal information with the peer group
New Technique of High-Performance Torque Control Developed for Induction Machines
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions
- …