2,631 research outputs found

    Effect of weight reduction pre-treatment on the electrical and thermal properties of polypyrrole coated woven polyester fabrics

    Full text link
    Weight reduction increased the amount of deposited polypyrrole (PPy) on the polyester (PET) fiber surface, leading to a considerable decrease in electrical resistance and improved heat generation capacity for the PPy coated PET fabrics. Application of dc voltages to an insulated roll of PPy-coated fabric increased the temperature to about 90 &deg;C. This showed the suitability of these fabrics for heating applications. The optimum PPy deposition of about 2.8% was obtained in samples weight reduced by aqueous sodium hydroxide treatment. AFM images revealed a smooth surface morphology of the untreated fiber whereas the treated fiber had a high surface roughness.<br /

    String Theory in the Penrose Limit of AdS_2 x S^2

    Full text link
    The string theory in the Penrose limit of AdS_2 x S^2 is investigated. The specific Penrose limit is the background known as the Nappi-Witten spacetime, which is a plane-wave background with an axion field. The string theory on it is given as the Wess-Zumino-Novikov-Witten (WZNW) model on non-semi-simple group H_4. It is found that, in the past literature, an important type of irreducible representations of the corresponding algebra, h_4, were missed. We present this "new" representations, which have the type of continuous series representations. All the three types of representations of the previous literature can be obtained from the "new" representations by setting the momenta in the theory to special values. Then we realized the affine currents of the WZNW model in terms of four bosonic free fields and constructed the spectrum of the theory by acting the negative frequency modes of free fields on the ground level states in the h_4 continuous series representation. The spectrum is shown to be free of ghosts, after the Virasoro constraints are satisfied. In particular we argued that there is no need for constraining one of the longitudinal momenta to have unitarity. The tachyon vertex operator, that correspond to a particular state in the ground level of the string spectrum, is constructed. The operator products of the vertex operator with the currents and the energy-momentum tensor are shown to have the correct forms, with the correct conformal weight of the vertex operator.Comment: 30 pages, Latex, no figure

    Millimeter-Wave Amplifier-Based Noise Sources in SiGe BiCMOS Technology

    Get PDF

    Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    Get PDF
    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e- RMS and a pulse rise time of less than 2 ns, in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps

    Characterization of conductive polyprrole coated wool yarns

    Full text link
    Wool yarns were coated with conducting polypyrrole by chemical synthesis methods. Polymerization of pyrrole was carried out in the presence of wool yarn at various concentrations of the monomer and dopant anion. The changes in tensile, moisture absorption, and electrical properties of the yarn upon coating with conductive polypyrrole are presented. Coating the wool yarns with conductive polypyrrole resulted in higher tenacity, higher breaking strain, and lower initial modulus. The changes in tensile properties are attributed to the changes in surface morphology due to the coating and reinforcing effect of conductive polypyrrole. The thickness of the coating increased with the concentration of p-toluene sulfonic acid, which in turn caused a reduction in the moisture regain of the wool yarn. Reducing the synthesis temperature and replacing p-toluenesulfonic acid by anthraquinone sulfonic acid resulted in a large reduction in the resistance of the yarn. <br /

    Unison Cache: A Scalable and Effective Die-Stacked DRAM Cache

    Get PDF
    Recent research advocates large die-stacked DRAM caches in manycore servers to break the memory latency and bandwidth wall. To realize their full potential, die-stacked DRAM caches necessitate low lookup latencies, high hit rates and the efficient use of off-chip bandwidth. Today's stacked DRAM cache designs fall into two categories based on the granularity at which they manage data: block-based and page-based. The state-of-the-art block-based design, called Alloy Cache, colocates a tag with each data block (e.g., 64B) in the stacked DRAM to provide fast access to data in a single DRAM access. However, such a design suffers from low hit rates due to poor temporal locality in the DRAM cache. In contrast, the state-of-the-art page-based design, called Footprint Cache, organizes the DRAM cache at page granularity (e.g., 4KB), but fetches only the blocks that will likely be touched within a page. In doing so, the Footprint Cache achieves high hit rates with moderate on-chip tag storage and reasonable lookup latency. However, multi-gigabyte stacked DRAM caches will soon be practical and needed by server applications, thereby mandating tens of MBs of tag storage even for page-based DRAM caches. We introduce a novel stacked-DRAM cache design, Unison Cache. Similar to Alloy Cache's approach, Unison Cache incorporates the tag metadata directly into the stacked DRAM to enable scalability to arbitrary stacked-DRAM capacities. Then, leveraging the insights from the Footprint Cache design, Unison Cache employs large, page-sized cache allocation units to achieve high hit rates and reduction in tag overheads, while predicting and fetching only the useful blocks within each page to minimize the off-chip traffic. Our evaluation using server workloads and caches of up to 8GB reveals that Unison cache improves performance by 14% compared to Alloy Cache due to its high hit rate, while outperforming the state-of-the art page-based designs that require impractical SRAM-based tags of around 50MB

    Point Interaction in two and three dimensional Riemannian Manifolds

    Full text link
    We present a non-perturbative renormalization of the bound state problem of n bosons interacting with finitely many Dirac delta interactions on two and three dimensional Riemannian manifolds using the heat kernel. We formulate the problem in terms of a new operator called the principal or characteristic operator. In order to investigate the problem in more detail, we then restrict the problem to one particle sector. The lower bound of the ground state energy is found for general class of manifolds, e.g., for compact and Cartan-Hadamard manifolds. The estimate of the bound state energies in the tunneling regime is calculated by perturbation theory. Non-degeneracy and uniqueness of the ground state is proven by Perron-Frobenius theorem. Moreover, the pointwise bounds on the wave function is given and all these results are consistent with the one given in standard quantum mechanics. Renormalization procedure does not lead to any radical change in these cases. Finally, renormalization group equations are derived and the beta-function is exactly calculated. This work is a natural continuation of our previous work based on a novel approach to the renormalization of point interactions, developed by S. G. Rajeev.Comment: 43 page
    • …
    corecore