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Abstract—Recent research advocates large die-stacked
DRAM caches in manycore servers to break the memory
latency and bandwidth wall. To realize their full potential, die-
stacked DRAM caches necessitate low lookup latencies, high
hit rates and the efficient use of off-chip bandwidth. Today’s
stacked DRAM cache designs fall into two categories based on
the granularity at which they manage data: block-based and
page-based. The state-of-the-art block-based design, called Al-
loy Cache, colocates a tag with each data block (e.g., 64B) in the
stacked DRAM to provide fast access to data in a single DRAM
access. However, such a design suffers from low hit rates due
to poor temporal locality in the DRAM cache. In contrast,
the state-of-the-art page-based design, called Footprint Cache,
organizes the DRAM cache at page granularity (e.g., 4KB), but
fetches only the blocks that will likely be touched within a page.
In doing so, the Footprint Cache achieves high hit rates with
moderate on-chip tag storage and reasonable lookup latency.
However, multi-gigabyte stacked DRAM caches will soon be
practical and needed by server applications, thereby mandating
tens of MBs of tag storage even for page-based DRAM caches.

We introduce a novel stacked-DRAM cache design, Unison
Cache. Similar to Alloy Cache’s approach, Unison Cache
incorporates the tag metadata directly into the stacked DRAM
to enable scalability to arbitrary stacked-DRAM capacities.
Then, leveraging the insights from the Footprint Cache design,
Unison Cache employs large, page-sized cache allocation units
to achieve high hit rates and reduction in tag overheads, while
predicting and fetching only the useful blocks within each page
to minimize the off-chip traffic. Our evaluation using server
workloads and caches of up to 8GB reveals that Unison cache
improves performance by 14% compared to Alloy Cache due
to its high hit rate, while outperforming the state-of-the art
page-based designs that require impractical SRAM-based tags
of around 50MB.
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I. INTRODUCTION

The steadily increasing processing capabilities of multi-

core and many-core processors require a commensurate

increase in memory bandwidth. However, memory speeds

have not kept pace with CPU performance scaling, which

has led to the so-called “Memory Wall” [30]. Modern data-

centric server workloads further exacerbate the pressure

on the memory system, as their vast working sets cannot

be captured by today’s SRAM caches [7], [8], [13], [21].

However, recent advances in die-stacking technologies (i.e.,

3D integration) have made it possible to integrate a sizeable

amount of DRAM in the same package as the processor.

Such die-stacked DRAM can provide several gigabytes

of storage [22] at a bandwidth of over 100GB/s. When

combined with “2.5D” silicon interposer-based integration,

multiple DRAM stacks may be placed in the same pack-

age [5], further increasing the in-package DRAM capacity.

Unfortunately, even several gigabytes of die-stacked

DRAM is insufficient to satisfy a high-end server’s mem-

ory capacity requirements (often exceeding one hundred

gigabytes for data-intensive applications). As a result, re-

searchers have been exploring various ways to use the

die-stacked DRAM as a giant last-level cache [10], [11],

[19], [20], [24], [33]. There are a number of fundamental

challenges that these past works have tried to address:

• Tag overhead: If the cache uses a conventional block

size (e.g., 64B), then the storage needed to record all

of the tags for, say, a 1GB DRAM cache would be

96MB-128MB (assuming a tag size of 6-8 bytes per

block). With larger granularities (e.g., a 4KB page),

the tag overheads are reduced by a factor of 64 (i.e.,

1.5MB-2MB). This may seem reasonable for the time

being, but as the technology rapidly enables multi-

gigabyte stacked DRAM capacities, even page-based

tags quickly consume too much SRAM to be practical.

To illustrate, 8GB of stacked DRAM would need 16MB

of SRAM in the best case, which is larger than today’s

last-level caches. Moreover, this storage drastically in-

creases if the cache uses sub-blocking to optimize for

off-chip bandwidth.

• Hit latency: While the stacked DRAM provides a

huge increase in bandwidth compared to conventional

DDR channels, the latency of the die-stacked DRAM

is not substantially better. If a DRAM cache architec-

ture requires accessing the stacked-DRAM or a multi-

megabyte SRAM table for tag lookups, then that could

add several tens of cycles to the overall cache latency,

offseting any latency advantage of stacked DRAM.

• Hit ratio: Little temporal locality exists at this level

of the cache hierarchy as any repeated accesses to the

same blocks would have likely hit in the higher cache

levels (e.g., L1, L2). Block-based DRAM caches, which

seek to exploit temporal locality [10], [11], provide

relatively low cache hit rates, reducing the efficacy of

the DRAM cache.

Recent DRAM-cache proposals have successfully ad-

dressed some of these challenges, but none (to the best

of our knowledge) have overcome all of them at the same
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time. The recent block-based Alloy Cache (AC) design [24]

provides an architecture that completely avoids any large

SRAM-based tag arrays, and overall provides low latencies

on cache hits. The cache is organized as direct-mapped to

avoid searching for the correct way throughout the DRAM-

based tags. However, these advantages come at the cost of

relatively low cache hit rates, which are further penalized

by the cache’s direct-mapped organization, and high miss

penalty. To avoid DRAM cache lookups on cache misses,

AC employs a miss predictor, sending cache requests to main

memory if a miss is predicted.
Footprint Cache (FC) takes a different tack [10], and uses

page-sized allocation units to reduce the SRAM tag arrays

to a couple of MBs. FC uses a “footprint predictor” to fetch

only the relevant subset of the 64B blocks from a page; this

provides high cache hit rates by exploiting spatial locality

within a page, while efficiently using the scarce off-chip

bandwidth by not fetching blocks that won’t be used. The

downside of FC is that, as discussed above, the SRAM-based

tag array will not gracefully scale to larger stacked DRAM

sizes and the tag array imposes additional latency to service

a request.
In this work, we present Unison Cache (UC). UC is

carefully designed to combine the best traits of both AC

and FC, while avoiding their shortcomings. Tags are directly

embedded in the stacked DRAM, like AC, to avoid SRAM-

based tag arrays. At the same time, Footprint Cache-like

large allocation units are used to exploit spatial locality, with

the added benefit of reducing the fraction of the stacked

DRAM’s capacity that must be set aside for the embedded

tags. To effectively realize such a design we leverage the

following insights:

• In order reduce hit latency Alloy Cache merges (“al-

loys”) each data block and its tag into a single unit and

streams both in a single access. However, the primary

latency benefit comes from breaking the serialization

between the tag and data accesses. Unison Cache

instead uses a single tag per page, but overlaps the tag

read with the data block read. In doing so, UC achieves

the same hit latency, but also allows for an effective

page-based organization with DRAM-based tags.

• By leveraging spatial locality, Unison Cache achieves

high hit ratios (often 90% or better). With such a

high hit ratio, the miss predictor used by Alloy Cache

to reduce miss penalty is not necessary, as a static

“always-hit” prediction achieves similar accuracy.

• Direct-mapped organization hurts page-based designs,

causing many more conflicts compared to block-based

designs. However, we find that direct-mapped organi-

zation is not necessary to achieve low hit latency. To

reduce the number of conflict misses Unison Cache is

organized as a set-associative cache. Instead of serial-

izing tag and data accesses or fetching all the ways

in parallel, Unison Cache relies on simple and highly

AC FC UC
No SRAM tag overhead � � �

Low hit latency � � �
High hit rate � � �

High effective capacity � � �
Scalability � � �

Table I. Comparison of Alloy Cache (AC), Footprint Cache (FC),
and Unison Cache (UC).

accurate way prediction, increasing neither the cache

hit latency nor the amount of transferred data.

The end result is that by carefully leveraging these in-

sights, the proposed Unison Cache is able to outperform

both Alloy Cache and Footprint Cache designs, approaching

the performance of an ideal “latency-optimized” DRAM

cache (100% hit rate, 0-cycle tag access). At the same time,

Unison Cache does not require SRAM-based tag arrays,

which allows Unison Cache to easily scale up to cache

sizes of many gigabytes needed by server applications. A

summary of the key features of Unison Cache, as well as

the prior art, is listed in Table I.

II. BACKGROUND AND MOTIVATION

Die-stacked DRAM has been advocated as a promising

technology to break the memory bandwidth and latency wall.

It delivers several times more bandwidth compared to off-

chip memory due to dense on-chip TSV buses, as well as

lower access latency. Unfortunately, the feasible die-stacked

DRAM capacities lag far behind the working set sizes of

data-intensive emerging server applications [10], [20]. This

capacity constraint precludes the use of die-stacked DRAM

as main memory. Hence, most proposals advocate employing

die-stacked DRAM as a cache to filter out accesses to off-

chip main memory [10], [11], [20], [24].

While existing die-stacked DRAM cache proposals sig-

nificantly reduce off-chip memory traffic, they fall short of

achieving one of the other two major design goals, namely

low hit latency and high hit rate. In the rest of this section,

we divide the existing designs into two classes and explain

why each class fails to achieve either low hit latency or high

hit rate.

A. Block-Based Caches

Similar to conventional on-chip caches, block-based

DRAM caches seek to exploit temporal locality and max-

imize storage efficiency by only storing requested cache

blocks. The use of larger cache lines could result in sig-

nificant data overfetch [10], [11], penalizing the scarce off-

chip bandwidth. Unfortunately, at this level of the memory

hierarchy, server workloads do not exhibit as much temporal

locality as they do at higher levels (i.e., most temporal

locality has already been filtered out by the L1 and L2

caches) [7]. Furthermore, server workloads typically do not

have small, well-defined working sets due to their enormous
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Figure 1. Overview of the state-of-the-art (a) block-based and (b) page-based DRAM cache designs.

memory footprints and complex access patterns [7]. As

a result, block-based DRAM cache designs can exhibit

excessive miss rates (e.g., as high as 70% [10]) on server

workloads.

Because the data is managed at a small granularity, block-

based DRAM caches require several tens or hundreds of

MBs for tags. Such a large volume of tag metadata rules out

a conventional on-chip, SRAM-based tag array, and forces

the tags to be placed in the stacked DRAM along with the

data blocks [19], [20], [24]. However, storing tags directly

in the DRAM cache can potentially require two DRAM

accesses per cache lookup (one for the tag and another for

data), thereby doubling the effective DRAM cache access

latency in the worst case.

To improve the effective DRAM cache access latency,

Loh and Hill proposed organizing each DRAM row as a

cache set and colocating all the ways of a set and their

corresponding tags in the same DRAM row [20]. On a

DRAM cache request, first, the tags in the beginning of a

row are accessed for tag comparison. Upon a tag match, the

request for the corresponding data block is issued separately,

causing serialization of the tag lookup and data access.

However, the accesses to tags and data are scheduled in a

way that ensures a row buffer hit for the data block after the

tag access.

Even though this scheduling optimization reduces the

DRAM cache hit latency by exploiting row buffer locality,

cache hits suffer from tag lookup and data fetch serialization,

while cache misses suffer from high miss latencies due to

the tag lookup in the DRAM cache prior to issuing the

request to the off-chip main memory. To reduce the DRAM

cache miss latency, Loh and Hill propose employing an on-

chip SRAM “MissMap” to maintain cache block presence

information. This way, DRAM cache misses can bypass the

high-latency lookups and an off-chip memory request can

be issued directly. Unfortunately, this comes at the cost of

further increasing the DRAM cache hit latency by adding

the MissMap access to the cache lookup path, and the multi-

MB MissMap itself will not scale up to support multi-GB

DRAM caches.

The state-of-the-art block-based approach, Alloy Cache

(AC) [24], organizes the DRAM cache as direct-mapped,

further reducing the already low hit rate, but compensating

for this by greatly improving the cache access latency. AC

merges (or “alloys”) each single data block with the corre-

sponding tag in unified tag-and-data units (TAD), as shown

in Figure 1(a). The direct-mapped organization eliminates

the need to search for the correct way in the DRAM,

allowing AC to stream out a TAD in a single read, thereby

breaking the tag-then-data serialization on cache hits and

thus significantly reducing the lookup latency compared to

Loh and Hill’s design.

To minimize the DRAM cache miss latency, AC employs

a simple low-latency miss predictor, moving the DRAM

cache tag lookup off the critical path when the predictor

correctly predicts misses. However, when a cache hit is

predicted to be a miss, AC creates extra off-chip traffic

by sending an unnecessary fetch request for a block that

is already in the cache. When a cache miss is predicted to

be a hit, the actual off-chip memory request is delayed by

the tag lookup in the cache.

In summary, the best existing block-based DRAM cache

designs are able to effectively mitigate tag-lookup latencies.

However, they fail to provide sufficiently high hit rates for

server workloads.

B. Page-Based Caches

Page-based caches allocate and fetch data at a coarse

granularity (e.g., 1-8KB pages) to maximize hit rates by

exploiting spatial locality. While server workloads do not ex-

hibit much temporal locality at lower levels 1 of the memory

hierarchy, they still exhibit significant spatial locality. Spatial

locality is abundant at lower levels of the hierarchy due to

longer residency of data. For example, a 2KB page would

typically stay in a 1GB cache for hundreds of milliseconds,

leaving much more time for different data pieces to be ac-

cessed within the page compared to, say, an 8MB cache. The

CPU cores see this phenomenon as high spatial locality [10].

As a result, page-based caches can greatly increase cache

hit rates when compared to block-based designs [9], [10],

[11]. Unfortunately, many pages contain data that are not

accessed prior to the page’s eviction from the cache, causing

1
We use terms higher and lower levels of the memory hierarchy to refer

to the levels closer to and further away from the core, respectively.

3



In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2014)

significant waste of precious off-chip memory bandwidth.

In extreme cases, page-based designs may increase the off-

chip traffic by an order of magnitude compared to a baseline

design without any DRAM cache [10], [11].

To prevent wasting off-chip memory bandwidth in page-

based caches, the state-of-the-art page-based DRAM cache

design, Footprint Cache (FC) [10], organizes the DRAM

cache in pages, but fetches only data that are going to be

touched during a page’s residency in the DRAM cache (the

page’s footprint), as Figure 1(b) depicts. FC relies on a

simple, but highly-accurate spatial correlation predictor [27]

to identify the footprint of a page (i.e., the set of blocks

within a page that are demanded by the processor during the

page’s residency in the cache). The footprint is predicted at

page allocation time based on the instruction that triggers

the first access to the missing page and the relative position

of that access within the page (i.e., block offset). When a

page is allocated in the cache, the triggering (PC, offset)

pair is stored in the tag array. Upon the page’s eviction,

its actual footprint is associated with the triggering (PC,

offset) pair and stored in an SRAM-based history table

for later prediction of footprints of other pages that are

traversed by the same code. By fetching only the useful

data in each DRAM cache page, FC eliminates the off-chip

bandwidth waste stemming from fetching untouched data,

while preserving the high hit rates attributed to the high

spatial locality within a page.

Page-based designs result in lower tag storage overheads

compared to block-based designs, which potentially allows

for accommodating the tags in on-chip SRAM tables for

faster tag lookups. For example, a 512MB Footprint Cache

requires around 3MB of tags, which, while not trivially

small, is still feasible to be implemented on-chip. However,

the improvements in die-stacked DRAM technology have

already pushed the feasible DRAM capacities up to several

GBs (e.g., Micron’s 4GB Hybrid Memory Cube [22]).

Device scaling and the continuing increase in the number

of layers that can be stacked promise for larger die-stacked

DRAM cache capacities. The introduction of 2.5D [4] or

silicon-interposer-based integration [26] could enable the

incorporation of multiple DRAM stacks, further increasing

the potential sizes of future DRAM caches. Unfortunately,

the expansion of DRAM cache capacities causes the tag

storage size and the associated tag lookup latency to be

a problem for page-based caches, as the tag storage size

quickly reaches several tens of MBs, exceeding what can be

economically built using conventional on-chip SRAM (and

even if die area were not a constraint, the latency of such a

large SRAM would be significant).

In conclusion, the best existing page-based DRAM caches

outperform block-based designs due to their high hit rates

without increasing the off-chip traffic. However, continued

increases in die-stacked DRAM capacity forces a redesign

of the tag architecture for page-based DRAM caches.

III. GETTING THE BEST OF BLOCK- AND PAGE-BASED

CACHES

In this section we examine the approaches to getting

the best properties of block-based and page-based designs,

which include: scalable DRAM-based solution for the tag ar-

ray, high hit rates, low off-chip traffic, and low cache-hit and

cache-miss latencies. We present our design, called Unison

Cache, and also discuss alternative ideas in Section III-B.

Unison Cache employs a page-based DRAM cache orga-

nization, but leverages a footprint predictor to only fetch the

useful blocks within each page [10]. The page tags in Unison

Cache are embedded in the stacked DRAM, and each tag

maintains the state of its blocks using bit vectors as well

as the footprint prediction metadata to facilitate learning the

footprints of pages during their residency in the cache.

A. Unison Cache

The first key insight that leads to an effective design is that

while Alloy Cache’s tag-and-data (TAD) colocation provides

the ability to stream both in a single DRAM access, the

primary latency benefit of such an approach comes from

breaking the serialization between tag and data accesses

rather than from the tag-and-data colocation itself. Unison

Cache physically separates tags and data blocks within the

DRAM row and uses a single tag per page, as shown in

Figure 2, but the read operations for both the tag and

the individual data block can be overlapped as they are

not dependent on each other. While this may require two

separate back-to-back read commands to the same row, the

reads are not serialized and therefore the latency ends up

being the same as for reading a TAD. Maintaining a single

tag per page also allows footprint tracking to be easily

implemented and reduces tag storage. A data block and the

corresponding page tag are always read in parallel (i.e., the

tags and data work “in unison”). The second observation

is that by leveraging spatial locality, Unison Cache (like

Footprint Cache) can achieve very high hit rates (often

90% or better). At this point, we can dispense with Alloy

Cache’s hit predictor, as a static “always-hit” prediction

would achieve accuracy similar to a dynamic hit prediction.

Finally, to avoid the price of direct-mapped organization,

which is particularly high for page-based designs, Unison

Cache is organized as set-associative, colocating all the

pages of a set in the same DRAM row. However, instead

of serializing tag and data accesses or fetching all the ways

at the same time, Unison Cache relies on highly accurate

way prediction, increasing neither the cache hit latency nor

the amount of transferred data.

In the rest of this section, we describe the Unison Cache

design and its operation in detail.

1) Footprint Prediction: Unison Cache learns and

fetches page footprints to avoid off-chip bandwidth waste.

The footprint of a page comprises all the blocks that are

touched between the first access to the page, which happens

4
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Figure 2. DRAM row content in Unison Cache (not drawn to scale).

upon an access to a page that is not in the cache, and the

eviction of the page.

Our design leverages FC’s footprint predictor [10]. The

predictor relies on the correlation between the code and page

footprints. This correlation stems from repeated calls to a

limited set of functions to access large amounts of data,

especially in well-structured object-oriented server software.

Repetitive calls to these functions result in repetitive data

access patterns (i.e., page footprints) that can be exploited

to predict future data accesses upon subsequent calls to the

same function. The correlation between code and data access

patterns has been heavily exploited for data prefetching [2],

[15], [27] and filtering of unused data [10], [14], [16], [32].

The instruction that accesses the first data block in a page

has been shown to accurately predict footprints of pages

that are later accessed by the same instruction [10], [27]. To

account for different alignments of data structure instances

in different memory pages, there is also a need to combine

the instruction information (i.e., PC) with the distance of

the first accessed block from the beginning of the page (i.e.,

offset) [10], [27]. Hence, the footprint predictor predicts

page footprints based on the (PC, offset) pair that initiates

the first access to a page, the trigger access. Each footprint

prediction table entry consists of a (PC, offset) pair and a

bit vector to indicate the page footprint correlated with that

pair.

2) Learning Footprints: To facilitate footprint learning,

each page in Unison Cache is augmented with a (PC, offset)

pair that corresponds to the first access to the page (trigger-

ing miss). This information is inserted into a DRAM row

along with the data when the page is allocated (Figure 2).

During the page’s residency in the cache, each access to a

block within a page updates the corresponding valid/dirty

bits in the bit vector that belongs to the page’s tag to

indicate that the block had been demanded. To determine

the footprint of a page it is necessary to make a distinction

between fetched blocks that are actually demanded by the

CPU at some point and those that are not (overfetched

blocks). To enable such a distinction without extra storage,

we modify the semantics of the existing valid and dirty

bits and use a different block state encoding scheme, as

was done in the Footprint Cache study [10]. Upon eviction,

the triggering (PC, offset) pair and the footprint bit vector

(constructed based on valid and dirty bits) of the evicted

page are used to update the footprint prediction table, which

associates a footprint to each (PC, offset) pair.

3) Fetching Footprints: When the requested page is not

found in the cache, the footprint prediction table is queried

for the (PC, offset) pair that triggered the cache miss. If

a match is found, the corresponding footprint is used to

determine what blocks will be fetched. In the case of a

miss to a block whose page is already allocated in the

cache (i.e., footprint underprediction), there is no need to

initiate footprint prediction and new page fetch. Instead,

only a single fetch request for the missing block is sent to

memory. However, when the page is evicted, the footprint

of the page will indicate that the block was touched during

the page’s residency and the footprint prediction table is

updated accordingly to avoid future underpredictions for the

same (PC, offset) pair. Likewise, the footprint prediction

might fetch blocks that are not touched during a page’s

residency in the DRAM cache (i.e., overpredictions). Similar

to underpredictions, overpredictions are also propagated to

the footprint prediction table when a page is evicted to avoid

future overpredictions.

4) Singleton Prediction: Prior work showed that a sig-

nificant fraction of page footprints consists of only a single

block [10], [27]. Such pages are called singletons. Singleton

pages reduce the effective DRAM cache capacity because

they allocating space for an entire page, but accommodate

only a single block. Hence, Unison Cache does not allocate

a page in the cache if the footprint prediction table predicts

the page to be a singleton. The missing block is fetched from

memory and simply forwarded to the requestor. However, as

singleton pages are not allocated in the cache, it is not pos-

sible to correct footprint mispredictions (corrections happen

upon page evictions). To track the singleton pages that might

become non-singleton later, Unison Cache employs a small

singleton table as in Footprint Cache [10].

5) Associativity: Alloy Cache uses direct-mapped orga-

nization to quickly locate the requested block in the cache

if it is present, without searching through the DRAM tags

to find the correct way. Unison Cache inherits the same

mechanism to quickly locate the requested page. However,

UC is page-based and direct-mapped page-based caches are

highly vulnerable to cache conflicts. While zero associativity

does not severely affect the hit ratio of block-based DRAM

cache designs due to the large number of sets [24], it has

a huge impact on page-based designs. According to our

analytical model, which we omit for space reasons, for

a 1GB cache and 2KB pages, the probability of conflicts

increases by a factor of ∼500 in the worst case compared

to a block-based direct-mapped cache of the same size.

5
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Figure 3. DRAM row organization in the Unison Cache design.

The reason lies in false conflicts introduced by the page-

organization. Namely, in block-based designs will be in

conflict if and only if they belong to the same set and if

they are both requested at the same time. On the contrary,

in page-based designs two blocks belonging to the same set

will be in conflict not only if the two blocks themselves

are needed at the same time, but also if any two blocks

from the pages they belong to are needed at the same time.2

The probability of conflicts thus grows quadratically with

the page size and creates a severe problem despite the large

cache size.

To reduce page conflicts and achieve higher hit rates,

we organize Unison Cache as a set-associative page-based

cache. We do not, however, go back to tags-then-data

serialization, as it would be highly inefficient; nor do we

fetch several ways in parallel, as it would create vast data

overfetch and eventually lead to serialization of the fetched

ways on the bus, significantly increasing the latency [24].

Instead, we use a simple way predictor that yields an

accuracy of over 95% and use this information to fetch the

correct way from a DRAM row. We describe the details

below.
6) DRAM Row Organization and Operations: So far

we assumed, for simplicity, that the size of a cache page

equals to the DRAM row size. In reality, DRAM rows

are typically larger than the desirable page size. For the

sake of generality, let’s assume that the cache is four-way

associative, the page size is 1KB, and the DRAM row size

is 8KB. In this example, each set is 4KB, and one DRAM

row accommodates two whole sets, as shown in Figure 3.

One of the two sets (half of a DRAM row) is shown in

more detail with its four pages. The metadata of each page

(valid bit, page tag, valid and dirty bit vectors, replacement

policy bits, and (PC, offset) is maintained in the beginning

of the row, such that the metadata required to determine the

presence of a block is stored first (page tags and bit vectors),

whereas (PC, offset) pairs and other metadata for all pages

2
This is analogous to the false sharing problem.

are stored after all the tag information. This placement is

chosen for efficiency reasons, so that all the tags from a set

can be read together in a single access. For this particular

configuration, the total size of the tag metadata for the four

pages is 32B, which can be transferred in two bursts over

a 128-bit TSV bus, corresponding to one bus cycle or two

CPU cycles in the system we evaluate.3 The metadata read

command is immediately followed by the read command

for the data block whose position in the DRAM row is

determined by the page offset and by the predicted way;

the two read operations are overlapped.

The two cycles that represent an overhead to read the tags

leave enough room for way prediction, which is done by the

DRAM controller and is not on the critical path. We use a

simple way predictor, which is a 2-bit array directly indexed

by the 12-bit XOR hash of the page address (16-bit XOR for

caches above 4GB). Prior work on way prediction has found

that address-based way predictors are the most accurate way

predictors for L1 caches [1], [23]. However, such predictors

are not an option for L1 caches because the actual address

is not known at the time when the prediction has to be

made for L1 blocks. We do not have such a constraint here.

While the accuracy of address-based way predictors is found

to be around 85% for individual blocks [1], [23], our way

predictor achieves much higher accuracy (∼95%), because it

operates at the page level. The abundant spatial locality leads

to repeated accesses to the same page; subsequent accesses

to the same page result in correct predictions. The predictors

page-based operation also reduces its storage overhead to

1KB (16KB for caches above 4GB). Because all the ways

of a set reside in the same DRAM row, way mispredictions,

apart from being rare, are also relatively cheap. Due to the

DRAM row organization shown in Figure 3, the correct way

in case of mispredictions is likely to be found in the row

buffer, thus the uncommon case is not severely penalized.

The (PC, offset) information is stored in the DRAM row

3
For systems with more than 1TB of memory (more than 40 physical

address bits), three bursts would be needed to transfer ∼48B of tags.
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upon the page’s allocation and it is read only upon its

evictions. This information is then used to update an SRAM-

based footprint prediction table with the actual footprint of

the evicted page, constructed from the page’s bit vectors.

In case of cache misses, it is easy to distinguish between

triggering misses (the requested page is not in the cache) or

regular misses resulting from incorrect footprint prediction

(i.e., underprediction), because the page tags for all the ways

and the block presence bit vectors are stored in one place.

The (PC, offset) information is also stored in the DRAM row

upon page allocation and it is read only upon its evictions.

This information is then used to update an SRAM-based

footprint prediction table along with the actual footprint of

the evicted page.

7) Address mapping: Integrating any kind of metadata

into DRAM causes alignment problems, because a fraction

of each DRAM row must be reserved for the metadata. In

the case of Unison Cache, embedding the tag array into

DRAM results in the page size being a non-power-of-two

number (e.g., the pages sizes are 960B or 1984B, containing

15 or 31 64-byte blocks, respectively). Such page sizes

require specialized logic for address manipulation instead of

simply relying on address bits. Designing a general-purpose

modulo-computing unit for such address manipulation would

incur high area and latency overheads. However, here we

compute modulo with respect to a constant in a specific

form (2n-1), which can be computed with several adders

using residue arithmetic [24]. We estimate the calculation to

take two cycles and only a few hundred gates, as in AC and

it can be overlapped with last-level SRAM cache accesses.

B. Alternative Approaches

In this section we discuss alternative approaches to getting

the best of block- and page-based designs. Looking at the

two ends of the spectrum, there are two seemingly obvious

ways to combine the two designs.

1) Block-based cache with footprint prediction: One

naı̈ve way of combining the two state-of-the-art block- and

page-based designs is to start with Alloy Cache’s direct-

mapped, block-based organization with the tags colocated

with data blocks, and then apply footprint prediction as

a prefetcher in attempt to exploit spatial locality. Since

the footprint prediction mechanism learns and predicts the

blocks within pages, such a design would require group-

ing a number of neighboring blocks into a logical page

and fetching and evicting them at the same time. Unlike

existing page-based DRAM cache proposals, such a design

could theoretically allow multiple pages to co-exist in the

same DRAM row as depicted in Figure 4(a). Unfortunately,

multiple pages (shown as different shades of gray in the

figure) could only co-exist in the same row if their footprints

are completely disjoint; an overlap would cause a conflict

and require the other page (i.e., its current footprint) to be

prematurely evicted, as allocations and evictions happen at

page granularity.

Such a design would introduce major problems due to the

mismatch between the cache organization and the footprint

prediction mechanism. First, there is no fast lookup mech-

anism to indicate the presence of a page in the cache. In

case of a miss, it is not possible to easily determine whether

other blocks of the same page are cached or not. Thus, to

identify if a cache miss is a trigger miss (the first miss to

a page that initiates footprint prediction and fetching the

page’s footprint from off-chip memory), the entire DRAM

row of the missing cache block needs to be scanned to

determine if any block from the same logical page is present

in the cache, because the block presence information is

spread out over the entire DRAM row. Not finding any block

within the page would indicate that the current miss is a

trigger access. Such a scan is also needed to identify the

footprint of the page that will be evicted as a result of the

miss, and update the footprint predictor state accordingly.

Unfortunately, scanning all tags in a DRAM row upon each

cache miss and block eviction would significantly reduce

DRAM cache availability, waste energy, and increase miss

latency. Also note that for each page in the cache, we must

keep its (PC, offset) pair that caused the initial miss, which

are used to update the footprint predictor state upon eviction

as in FC [10]. It is not straightforward to augment each

DRAM row with the metadata corresponding to each of the

variable number of logical pages it contains.

2) Page-based cache with tagged blocks: Another naı̈ve

way of combining the two designs is to start with FC and

preserve its page organization, but augment each block in

DRAM with its tag in order to stream tag and data blocks

together in a single DRAM access, as in Alloy Cache. A

DRAM row in such an organization is shown in Figure 4(b).

As each DRAM row now accommodates a single page, upon

a DRAM cache miss it is possible to determine whether

or not the miss is the first access to the page that initiates

the missing page’s footprint fetch. However, this requires

writing the correct page tag and resetting the valid bit even

for blocks that are not fetched upon page insertions, which

means an extra DRAM write for each block that does not

belong to the footprint of a newly fetched page. Furthermore,

upon page evictions following a miss, there is no simple

lookup mechanism to identify the footprint of the evicted

page; the entire DRAM row would need to be scanned to

determine the valid blocks within the page. In contrast to the

previous design point, the (PC, offset) pair that triggered a

page access could be stored at a predetermined position in

the corresponding DRAM row and later used to update the

footprint prediction table with the correct footprint.

In both naı̈ve design points each data block is colocated

with its corresponding tag to minimize latency, leading to

a vast amount of replication. The tag replication wastes

around 1/8 of the total cache capacity and further reduces

7
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Data blocks

(a) Block-based cache with footprint prediction (different colors encode blocks in different pages)

Tag,V,D Tag,V,D Tag,V,D Tag,V,D Tag,V,D...

PC+offset Tag,V,D Tag,V,D Tag,V,D Tag,V,D...

(b) Page-based cache with tagged blocks

64 bytes

Tag,V,D

8 bytes

8 bytes

64 bytes8 bytes

Figure 4. DRAM row organizations for (a) block-based cache with footprint prediction, and (b) page-based cache with tagged blocks.

Alloy Cache Footprint Cache Unison Cache
Cache Miss Rate Medium-High Low Low

Hit Latency Predictor + DRAM TAD Read SRAM Tag + DRAM Data Read Overlapped DRAM Tag + Data Reads
Miss Latency Predictor Lookup SRAM Tag Lookup DRAM Tag Lookup
Associativity Direct-mapped 32-way 4-way (two pages)

64B Blocks per 8KB Row 112 128 120-124
SRAM Tag Array @ 8GB — ∼48MB —

In-DRAM Tag Size @ 8GB 1GB (12.5% of DRAM) — 256-512MB (3.1-6.2% of DRAM)
Miss-Predictor Size 96B per core, 1.5KB total — —

Way Predictor — — 1-16KB
Footprint History Table — 144KB 144KB

Singleton Table — 3KB 3KB

Table II. Comparison of key characteristics of different DRAM cache schemes.

the hit ratio. Furthermore, the footprint predictor is partially

integrated into DRAM-based tags, which contain various

metadata needed for prediction, most importantly the block

presence information. Spreading this information throughout

a DRAM row causes, as discussed, a variety of problems

related to footprint tracking, detecting triggering misses,

page evictions, and unnecessary DRAM row scans and

writes. Unison Cache avoids these problems by centralizing

the tag information for all data blocks within a page and

accessing this information in parallel with data blocks to

avoid any latency penalty.

C. Summary and Comparisons
Unison Cache leverages insights and ideas from both

the Alloy Cache and the Footprint Cache, but synthesizes

and extends them in unique ways to “get the best of

both worlds” while side-stepping their pitfalls. Given the

many interacting and inter-dependent components, Table II

provides a summary of the key characteristics of the different

DRAM cache design approaches to more easily distinguish

the contributions and strengths of Unison Cache.
Unison Cache maintains the low miss rate of Footprint

Cache (FC), the low hit latency of Alloy Cache (AC), avoids

the impractically large SRAM tag arrays of FC, has lower

embedded DRAM tag overheads than AC, and has no miss

predictor like AC. Assuming an 8GB die-stacked DRAM

and 2KB pages, FC would require about 50MB for its

SRAM tag array.
On a cache miss, AC has the best latency (assuming

the hit-predictor was correct), but in practice both FC

and Unison Cache have sufficiently high hit rates that the

additional tag-lookup latency for misses has a much smaller

impact. FC and Unison Cache often have hit rates in excess

of 90%, which is functionally equivalent to having a static

hit-predictor with a 90% accuracy.

FC has by far the highest associativity. However, the

additional associativity beyond four ways provides rapidly

diminishing returns, as discussed in Section V. This is why

Unison Cache’s comparatively lower 4-way set associativity

is not a significant constraint.

Like FC, Unison Cache requires some on-chip SRAM

resources to implement the footprint predictor structures, but

these are fixed sizes and do not grow with increasing stacked

DRAM capacities.

IV. METHODOLOGY

A. Simulation Infrastructure

We evaluate Unison Cache through a combination of

trace-driven and cycle-level simulation of a 16-core CMP

running server workloads. We use the Flexus [29] full-

system multiprocessor simulator, which extends the Vir-

tutech Simics functional simulator with OoO cores, on-chip

network, and memory hierarchy and models the SPARC v9

ISA. We use DRAMSim2 [25] integrated into Flexus to

model both the die-stacked DRAM and the off-chip DRAM,

with the parameters listed in Table III.

The trace-driven experiments are based on the memory

traces that consist of 30 billion instructions per core, two

8
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CMP Organization 16-core Scale-Out Processor pod
Core ARM Cortex-A15-like, 3-way OoO @3GHz
L1-I/D caches 64KB, split, 64B blocks

2-cycle load-to-use latency
L2 cache per pod 4MB, unified, 16-way, 64B blocks,

4 banks, 13-cycle hit latency
Interconnect 16x4 crossbar
Off-chip DRAM 16-32GB, one DDR3-1600 (800MHz) channel

8 banks per rank, 8KB row buffer
Stacked DRAM DDR-like interface (1.6GHz)

4 channels, 8 banks/rank,
8KB row buffer, 128-bit bus width

tCAS-tRCD-tRP-tRAS 11-11-11-28
tRC-tWR-tWTR-tRTP 39-12-6-6
tRRD-tFAW 5-24

Table III. Architectural system parameters.

Cache size (B) 128M 256M 512M 1G 2G 4G 8G
Tags (MB) 0.8 1.58 3.12 6.2 12.5 25 50

Latency (cycles) 6 9 11 16 25 36 48

Table IV. Footprint Cache parameters.

thirds of which are used for cache warm-up. We evalu-

ate performance through a set of cycle-level experiments,

leveraging the SimFlex [29], [31] multiprocessor sampling

methodology for server workloads. Our samples are col-

lected over 15 seconds of workload execution. For each

measurement point, the cycle-level simulation starts from

checkpoints with warmed up architectural state (i.e., caches

and branch predictors) and runs for 800K cycles (2M for

Data Serving) to warm up the queues and the interconnect

state. Then, we collect measurements for the subsequent

400K cycles of the cycle-level simulation. To measure per-

formance, we use the ratio of the number of user instructions

to the total number of cycles (including the cycles spent

executing the operating system code), as this metric has been

shown to accurately reflect overall server throughput [29].

Performance measurements are computed with an average

error of less than 2% at a 95% confidence level.

B. Baseline System Configuration

Our baseline processor is a 16-core CMP design based

on the Scale-Out Processor design methodology [21], which

seeks to maximize throughput per die area. The chip features

a modestly sized last-level cache to capture the instruction

working set and shared OS data, which are independent of

the core count, and dedicates the rest of the die-area to the

cores to maximize throughput. The architectural features are

listed in Table III.

C. DRAM Cache Organizations

1) Unison Cache: The evaluated design is organized

as a four-way set associative cache. Each DRAM row

accommodates two sets, each of which contains four pages.

Each page contains 15 blocks (960B), and the whole DRAM

row accommodates 120 data blocks. We also evaluate a

direct-mapped organization of Unison Cache as well as
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Figure 5. Unison Cache’s miss ratio as a function of associativity.

organizations with 1984B pages. The parameters for foot-

print prediction are taken from the original Footprint Cache

design [10].

2) Footprint Cache: We evaluate the original design

with 2KB pages, which is found to be the sweet spot between

the accuracy and tag storage overhead [10]. The 8KB DRAM

row can accommodate four pages with 128 data blocks.

While 1KB pages are a better match for Unison Cache,

Footprint Cache cannot afford that page size as the already

high SRAM-based tag storage would double. The aggregate

size of the tag storage for various cache sizes is listed in

Table IV along with the conservatively estimated latencies.

Note that for larger cache sizes Footprint Cache’s tag array

grows up to ∼50MB, which cannot even fit alone in the area

of today’s chips, but we evaluate these hypothetical designs

as reference points.

3) Alloy Cache: The 8KB row buffer is able to accom-

modate 112 data blocks. Alloy Cache also employs a miss

predictor with a one-cycle latency to bypass the DRAM

cache lookup in case of a DRAM cache miss.

D. Workloads

As a representative set of emerging scale-out server ap-

plications that are highly data-intensive and exhibit abun-

dant request-level parallelism, we use the CloudSuite [3]

workloads, including Data Analytics, Data Serving, Software

Testing, Web Search, and Web Serving [7]. To evaluate

multi-gigabyte cache designs, we use a set of analytic

queries from the industrial TPC-H benchmark (referred to as

TPC-H), running on a modern column-store database engine,

MonetDB [12]. While the datasets of other workloads are

scaled from hundreds of gigabytes down to 5-20GB (de-

pending on the workload) to allow for practical full-system

simulation, the TPC-H dataset is unchanged and exceeds

100GB.
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Data Data Software Web Web TPC-H Average
Analytics Serving Testing Search Serving Queries Value

Alloy Cache
MP Accuracy (%) 96.4 90.0 93.2 97.2 91.8 89.0 92.3
MP Overfetch (%) 7.3 6.4 16.2 13.5 7.9 1.9 8.7

Footprint Cache
FP Accuracy (%) 92.4 97.7 81.5 98.6 92.3 93.8 92.7
FP Overfetch (%) 9.2 4.0 24.7 1.6 9.0 6.18 9.1

Unison Cache - 960B
FP Accuracy (%) 93.1 97.1 84.2 95.5 89.8 84.0 90.6
FP Overfetch (%) 9.0 3.7 20.6 3.2 12.8 10.7 10
WP Accuracy (%) 89.6 90.6 92.4 96.6 94.6 95.9 93.3

Unison Cache - 1984B

FP Accuracy (%) 90.2 95.7 78.2 94.4 83.4 79.9 87.0
FP Overfetch (%) 11.5 5.4 26.8 4.4 18.9 15.4 13.0
WP Accuracy (%) 91.1 93.9 96.2 98.1 96.9 96.8 95.5

Table V. Accuracy of various predictors: Miss Predictor (MP) in Alloy Cache, and Footprint Predictor (FP) in Footprint Cache and
Unison Cache, and Way Predictor (WP) in Unison Cache for a 1GB cache (8GB for TPC-H queries).
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Figure 6. Miss ratio comparison of Alloy Cache, Footprint Cache, and Unison Cache.

V. EVALUATION

A. Predictor Accuracy

The three designs we evaluate in this paper rely on various

predictors to predict if an access is a hit or miss, to predict

page footprints, or to predict the correct way in a set-

associative cache. Table V summarizes the effectiveness of

these predictors as well as the extra off-chip traffic generated

by some of the predictors due to mispredictions, assuming a

1GB cache (8GB for TPC-H queries). We observed similar

trends for other cache sizes, so we do not show the results

for them due to space constraints. For Unison Cache (UC),

we show two design points: with 960B and 1984B pages,

both 4-way associative. For Alloy Cache (AC), we show

the accuracy of the miss predictor—the fraction of misses

correctly identified as such. Misses that are wrongly pre-

dicted as hits increase miss latency. AC’s miss predictor is

highly effective achieving over 90% accuracy on our server

workloads. The hits that are wrongly identified as misses

and thus cause unnecessary off-chip traffic are also shown

and are not significant.

For Footprint Cache (FC) and UC, we show the footprint

predictor’s accuracy—the fraction of a page’s footprint that

is correctly predicted. We note that this metric is not

comparable to AC’s accuracy metric. The difference in

accuracy for FC and UC stems from the differences in

associativity and page size. For most of the workloads, UC’s

accuracy match the accuracy of FC. We also note that the

UC organization with 960B pages on average provides better

prediction accuracy compared to the 1984B organization,

which is what the FC study also concluded [10]. While FC

cannot afford this granularity because of its SRAM-based

tag array, UC keeps tags in DRAM and is not restricted to

large page sizes.

We also show the overfetch ratios of the two predictors

to determine the extra off-chip traffic they generate. AC’s

miss predictor causes overfetch when it incorrectly predicts

a DRAM cache hit to be a miss. Footprint predictor causes

overfetch when it fetches blocks that are not accessed prior

to a page’s eviction. It is important to note that all three

designs are highly bandwidth-efficient with small overfetch

rates (∼10% on average), which are offset by the benefits

their predictors provide.

B. Miss Ratio

As explained in Section III, UC increases the associativity

to four by adding only two CPU cycles to the hit latency,

which is negligible compared to the ∼60 cycles it takes to
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Figure 7. Performance comparison of Alloy, Footprint, and Unison Caches. Note the difference in scale for Data Serving.

access DRAM, and without causing data overfetch. Figure 5

shows the miss ratio for the UC organization with 960B

pages while varying the cache associativity, for both large

and small cache sizes. The miss ratios are plotted in a

stacked fashion. For example, the dark gray bars show the

miss ratios for a 32-way cache, while the sum of dark

and light grey bars shows the miss ratios for the 4-way

organization. The total height corresponds to the direct-

mapped organization. We see that the four-way organization

provides a sizable reduction in miss ratio, sometimes by

a factor larger than two compared to the direct-mapped

organization (the reduction is captured by the white bar). We

note that beyond four ways, there is no significant reduction

in the hit ratio to compensate for the increased tag lookup

latency and reduced accuracy of the way predictor.

Way prediction and associativity have orthogonal effect.

While reasonably small associativity halves the miss ratio

(Figure 5), way prediction enables an effective implemen-

tation of associativity by eliminating the latency and band-

width overheads. In our case, for a 4-way associative cache,

way prediction reduces the latency by 12 cycles (needed to

transfer extra ways, 20% of hit latency) and reduces the hit

traffic by 4x, as all the ways would otherwise have to be

fetched in parallel.

We further compare the three designs with respect to their

miss ratios in Figure 6 for a range of DRAM cache sizes.

As expected, AC has by far the highest miss ratio due to low

temporal locality. The exception is Data Analytics, a Map-

Reduce workload that exhibits the lowest spatial locality due

to its pointer-intensive nature caused by frequent hash table

lookups. For this workload, the differences in miss ratio

between the designs are less pronounced.

FC and UC, on the other hand, significantly reduce the

cache miss ratio by exploiting spatial locality and fetching

whole page footprints. The small differences between the

miss ratios of FC and UC stem from different page sizes

used in the two designs (2KB and 1KB, respectively), the

difference in associativity, and a slight difference in the

effective cache capacity. Because of the larger page size,

FC provides slightly better miss ratios for applications with

extremely high spatial locality, such as Web Search. In the

case of Data Analytics, UC achieves a better miss ratio due

to the higher footprint prediction accuracy and low spatial

locality of this workload, which prefers smaller page sizes.

Because AC is a block-based design, all the cache hits

come solely from the temporal reuse. In other words, the hit

ratio directly corresponds to the bandwidth savings provided

by the cache. It is interesting to note that AC’s miss ratio

for TPC-H is consistently high, dropping down only for very

large cache sizes; caches smaller than 2-4GB hardly provide

any hits. This is in line with our intuition that multi-gigabyte

caches are indeed required to provide a noticable reduction

in the off-chip traffic for realistic server setups.

C. Performance

Figure 7 compares the performance of the three designs

for a range of DRAM cache sizes for all workloads except

TPC-H. We also compare the three designs against an ideal

DRAM cache that never misses and has no tag overheads,

an equivalent to die-stacked main memory.

For small cache sizes, FC performs the best. Compared

to AC, it enjoys a much higher hit ratio. The exception

is Data Analytics (Map-Reduce), which for the smallest

cache size prefers block-based designs due to the lack of

spatial locality. As we increase the cache size, the pages stay

longer in the cache and their footprints become denser [10],

increasing the spatial locality. However, FC’s tag array

access latency increases with the cache size, increasing

both the hit and miss latency and ultimately resulting in

diminishing performance returns despite higher hit ratios. In
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contrast, the cache size affects neither the hit nor the miss

latency in case of UC and AC, which is why UC outperforms

FC for larger cache sizes.

A more realistic scenario is shown in Figure 8, which

compares the performance of the three designs for TPC-H

queries, for 1-8GB caches. In this case Unison Cache con-

stantly outperforms the hypothetical Footprint Cache design

due to its low and constant access latency, whereas the tag

array access latency precludes performance improvements

for Footprint Cache. Alloy Cache sees steady performance

improvements, which are however limited by its low hit

ratio.

Overall, Unison Cache provides a 14% performance im-

provement over Alloy Cache and 2% over the hypothetical

Footprint Cache design for a 1GB cache (7% and 6% in case

of an 8GB cache for TPC-H queries). We note once again

that beyond 256-512MB, Footprint Cache is not a feasible

option due to its SRAM-based tag array, which requires up

to 50MB for an 8GB design.

D. Energy Considerations

All designs reduce the off-chip main memory energy by

reducing the number of accesses to it. However, both UC

and FC provide a significant further reduction in energy

by reducing the number of DRAM row activations, the

most energy-demanding operations, by an order of magni-

tude [10], [28]. Namely, while cache misses in the case

of AC result in random memory accesses, both UC and

FC perform off-chip data transfers at the granularity of

footprints, which fit in a DRAM row. In case of AC,

for almost every block transferred between the cache and

memory, a DRAM row needs to be activated both in off-chip

DRAM and in the cache, whereas for UC a row activation

happens once for the whole footprint (i.e., once per ∼10

blocks). Similarly, the DRAM cache energy is reduced due

to the cache evictions and fills that happen at the footprint

granularity. Data transfers between the die-stacked and off-

chip DRAM are, thus, much more energy-efficient in the

case of UC and FC. The FC study already quantifies these

benefits [10], which are around 20-25% of dynamic DRAM

energy and to the first order are the same for FC and UC.

Because a similar analysis has been done before [10], we

omit it for space reasons.

VI. RELATED WORK

Prior work has shown that die-stacked DRAM is a promis-

ing technology to bridge the latency gap between processor

and memory and to break the memory bandwidth wall. A

large body of prior work considered die-stacked DRAM

either as main memory [9], [13], [17], [18], or as a large

hardware-managed cache [10], [11], [19], [20], [24], [33]

due to the limited stacked DRAM capacity. Stacked DRAM

has also been considered as a software-managed level in the

memory hierarchy [6].

The prior work that considered die-stacked DRAM as

a cache has targeted maximizing the hit rates [10], [11]

and minimizing the wasted off-chip bandwidth consump-

tion [10], [11], [20], [24] leaning toward page-based organi-

zations that fetch data within pages selectively [10]. Because

the technology allowed for only relatively small stacked

DRAM cache sizes, tag storage and latency overheads

did not impose any considerable challenge to page-based

designs, while block-based caches required storing the tags

in the cache and minimizing the associated tag latency [20],

[24]. Unison Cache eliminates the tag overhead for a page-

based DRAM cache, given the rapidly increasing stacked

DRAM capacities, relying on the insights into the tag storage

optimizations for block-based caches.

VII. CONCLUSION

This paper introduces Unison Cache, a practical and

scalable stacked DRAM cache design, which brings together

the best traits of the state-of-the-art block- and page-based

designs. Unison Cache achieves high hit rates and low

DRAM cache access latency, while eliminating impractically

large on-chip tag arrays by embedding the tags in the DRAM

cache. Cycle-level simulations of scale-out server platforms

using Unison Cache show a 14% performance improvement

over the state-of-the-art block-based DRAM cache design,

stemming from the high hit rates achieved by Unison Cache.

Unlike prior page-based designs, Unison Cache requires no

dedicated SRAM-based tag storage, enabling scalability to

multi-gigabyte stacked DRAM cache sizes.
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