1,009 research outputs found

    Feature fusion reveals slow and fast visual memories

    Get PDF
    Although the visual system can achieve a coarse classification of its inputs in a relatively short time, the synthesis of qualia-rich and detailed percepts can take substantially more time. If these prolonged computations were to take place in a retinotopic space, moving objects would generate extensive smear. However, under normal viewing conditions, moving objects appear relatively sharp and clear, suggesting that a substantial part of visual short-term memory takes place at a nonretinotopic locus. By using a retinotopic feature fusion and a nonretinotopic feature attribution paradigm, we provide evidence for a relatively fast retinotopic buffer and a substantially slower nonretinotopic memory. We present a simple model that can account for the dynamics of these complementary memory processes. Taken together, our results indicate that the visual system can accomplish temporal integration of information while avoiding smear by breaking off sensory memory into fast and slow components that are implemented in retinotopic and nonretinotopic loci, respectively

    Species- and organ-specificity of secretory proteins derived from human prostate and seminal vesicles

    Get PDF
    Polyclonal antibodies against semenogelin (SG) isolated from human seminal vesicle secretion and acid phosphatase (PAP), β‐microseminoprotein (β‐MSP), and Prostate‐Specific Antigen (PSA) derived from human prostatic fluid, as well as a monoclonal antibody against β‐MSP were used for immunocytochemical detection of the respective antigens in different organs from different species. SG immunoreactivity was detected in the epithelium of the pubertal and adult human and in monkey seminal vesicle, ampulla of the vas deferens, and ejaculatory duct. PAP, β‐MSP, and PSA immunoreactivities were detected in the pubertal and adult human prostate and the cranial and caudal monkey prostate. With the exception of a weak PSA immunoreactivity in the proximal portions of the ejaculatory duct, none of the latter antisera reacted with seminal vesicle, ampullary, and ejaculatory duct epithelium. Among the non‐primate species studied (dog, bull, rat, guinea pig) only the canine prostatic epithelium displayed a definite immunoreactivity with the PAP antibody and a moderate reaction with the PSA antibody. No immunoreaction was seen in bull and rat seminal vesicle and canine ampulla of the vas deferens with the SG antibody. The same was true for the (ventral) prostate of rat, bull, and dog for β‐MSP. The epithelium of the rat dorsal prostate showed a slight cross‐reactivity with the monoclonal antibody against β‐MSP and one polyclonal antibody against PSA. The findings indicate a rather strict species‐dependent expression of human seminal proteins which show some similarities in primates, but only marginal relationship to species with different physiology of seminal fluid

    Meerjarige wortelonkruiden : onderzoeksplan

    Get PDF
    Er zijn op akkerbouwbedrijven, vooral op biologisch, problemen met de bestrijding van meerjarige wortelonkruiden. Het probleem wordt ook steeds groter. Door middel van biologische grond ontsmetting (BGO) wordt het aantal meerjarige wortelonkruiden verminderd, maar hoeveel en hoe sterk dat is, is niet bekend. Het effect van BGO werd voornamelijk onderzocht op het onkruid akkermelkdistel. Dit onderzoek werd uitgevoerd door PPO-AGV te Lelystad geholpen door leerlingen van de CAH Dronten. Het onderzoek is een echte proef van PPO en geeft studenten de kans om te leren hoe het in de praktijk gaat met uitvoering en verwerking van gegevens in het onderzoek

    Alpine vascular plant species richness: the importance of daily maximum temperature and pH

    Get PDF
    Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone. Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causalit

    Changes in species composition in alpine snowbeds with climate change inferred from small-scale spatial patterns

    Get PDF
    Alpine snowbeds are characterised by a very short growing season. However, the length of the snow-free period is increasingly prolonged due to climate change, so that snowbeds become susceptible to invasions from neighbouring alpine meadow communities. We hypothesised that spatial distribution of species generated by plant interactions may indicate whether snowbed species will coexist with or will be out-competed by invading alpine species – spatial aggregation or segregation will point to coexistence or competitive exclusion, respectively. We tested this hypothesis in snowbeds of the Swiss Alps using the variance ratio statistics. We focused on the relationships between dominant snowbed species, subordinate snowbed species, and potentially invading alpine grassland species. Subordinate snowbed species were generally spatially aggregated with each other, but were segregated from alpine grassland species. <br><br> Competition between alpine grassland and subordinate snowbed species may have caused this segregation. Segregation between these species groups increased with earlier snowmelt, suggesting an increasing importance of competition with climate change. Further, a dominant snowbed species (<i>Alchemilla pentaphyllea</i>) was spatially aggregated with subordinate snowbed species, while two other dominants (<i>Gnaphalium supinum</i> and <i>Salix herbacea</i>) showed aggregated patterns with alpine grassland species. These dominant species are known to show distinct microhabitat preferences suggesting the existence of hidden microhabitats with different susceptibility to invaders. <br><br> These results allow us to suggest that alpine snowbed areas are likely to be reduced as a consequence of climate change and that invading species from nearby alpine grasslands could outcompete subordinate snowbed species. On the other hand, microhabitats dominated by <i>Gnaphalium</i> or <i>Salix</i> seem to be particularly prone to invasions by non-snowbed species
    • …
    corecore