117 research outputs found

    Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.

    Get PDF
    The secretion of proteolytic enzymes by pathogenic microorganisms is one of the most successful strategies used by pathogens to colonize and infect the host organism. The extracellular microbial proteinases can seriously deregulate the homeostatic proteolytic cascades of the host, including the kinin-forming system, repeatedly reported to he activated during bacterial infection. The current study assigns a kinin-releasing activity to secreted proteinases of Candida spp. yeasts, the major fungal pathogens of humans. Of several Candida species studied, C. parapsilosis and C. albicans in their invasive filamentous forms are shown to produce proteinases which most effectively degrade proteinaceous kinin precursors, the kininogens. These enzymes, classified as aspartyl proteinases, have the highest kininogen-degrading activity at low pH (approx. 3.5), but the associated production of bradykinin-related peptides from a small fraction of kininogen molecules is optimal at neutral pH (6.5). The peptides effectively interact with cellular B2-type kinin receptors. Moreover, kinin-related peptides capable of interacting with inflammation-induced B1-type receptors are also formed, but with a reversed pH dependence. The presented variability of the potential extracellular kinin production by secreted aspartyl proteinases of Candida spp. is consistent with the known adaptability of these opportunistic pathogens to different niches in the host organism

    Molecular characterization of cytochrome P450 1B1 and effect of benzo(a) pyrene on its expression in Nile tilapia (Oreochromis niloticus)

    Get PDF
    Cytochrome P4501 (CYP1) family enzymes are most active in hydroxylating a variety of environmental contaminants including Polyaromatic Hydrocarbons (PAH), planar polychlorinated biphenyls and arylamines. CYP1B which belongs to the cytochrome  P450 superfamily of genes, is involved in the oxidation of endogenous and exogenous compounds, and could potentially be a useful biomarker in fish for exposure to arylhydrocarbon receptors (AhR) ligands. In this study, a new complementary   DNA (cDNA) of the CYP1B subfamily encoding 1B1 was isolated from Nile tilapia (Oreochromis niloticus) liver after intracoelomic injection with benzo (a) pyrene (BaP). The full-length cDNA was 2107 base pair (bp) long and contained a 5' noncoding region of 29 bp, an open reading frame of 1527 bp coding for 508 amino acids and a stop codon, and a 3' noncoding region of 551 bp, respectively. The deduced amino acid sequence of Nile tilapia CYP1B1 shows similarities of 79.7, 70.3, 65.7, 65.4, 65.0, and 63.7% with Plaice CYP1B1, Japanese eel CYP1B1, zebra fish CYP1B1, common carp CYP1B1, common carp CYP1B2 and  Channel catfish CYP1B1, respectively. The phylogenetic tree based on the amino acid sequences clearly shows tilapia CYP1B1  and Plaice CYP1B1 to be more closely related to each other than to the other CYP1B subfamilies. Furthermore, real-time PCR  was used for measuring BaP induction of CYP1B1 mRNA in different organs of tilapia (O. niloticus), using β-actin gene as internal control, and the results revealed that there was a large increase in CYP1B1 mRNA in liver (22.8), intestine (2.0) and muscles (1.3).Keywords: Oreochromis niloticus, benzo (a) pyrene, CYP1B1 cDNA, sequence analysis, real-time PCR

    Frequent loss of RUNX3 gene expression in remnant stomach cancer and adjacent mucosa with special reference to topography

    Get PDF
    Our previous studies suggest that a lack of RUNX3 function is causally related to the genesis and progression of human gastric cancer. This study was conducted to determine whether alteration of RUNX3 gene expression could be detected in the normal-looking gastric remnant mucosa, and to ascertain any difference in the potential of gastric carcinogenesis between the anastomotic site and other areas in the remnant stomach after distal gastrectomy for peptic ulcer (RB group) or gastric cancer (RM group), by analysing RUNX3 expression with special reference to topography. A total of 89 patients underwent distal gastrectomy for gastric cancer from the intact stomach (GCI group) and 58 patients underwent resection of the remnant stomach for gastric cancer (RB group: 34 cases, RM group: 24 cases). We detected RUNX3 and gene promoter methylation by in situ hybridisation, quantitative reverse transcriptase–polymerase chain reaction (RT–PCR), and methylation-specific PCR. The interval between the initial surgery and surgery for remnant gastric cancer (interval time) was 10.4 years in the RM group, and 27.5 years in the RB group. Cancers in the RB group were significantly more predominant in the anastomosis area (P<0.05). Within the tumour, downregulation of RUNX3 expression ranged from 74.7 to 85.7% in the three groups. The rate of downregulation of RUNX3 of adjacent mucosa was 39.2% (11 in 28 cases) in RB and 47.6% (10 in 21 cases) in RM, which are significantly higher than that of the GCI group (19.5%, 17 in 87 cases). In noncancerous mucosa of the remnant stomach in the RB group, RUNX3 expression decreased more near the anastomosis area. In the RM group, however, there were no significant differences in RUNX3 expression by sampling location. Based on RUNX3 downregulation and clinical features, residual stomach mucosa of the RM group would have a higher potential of gastric carcinogenesis compared to the RB or GCI group. Gastric stump mucosa of the RB group has higher potential especially than other areas of residual stomach mucosa. Measurement of RUNX3 expression and detection of RUNX3 methylation in remnant gastric mucosa may estimate the forward risk of carcinogenesis in the remnant stomach

    Upper abdominal body shape is the risk factor for postoperative pancreatic fistula after splenectomy for advanced gastric cancer: A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postoperative pancreas fistula (POPF) is a major complication after total gastrectomy with splenectomy. We retrospectively studied the effects of upper abdominal shape on the development of POPF after gastrectomy.</p> <p>Methods</p> <p>Fifty patients who underwent total gastrectomy with splenectomy were studied. The maximum vertical distance measured by computed tomography (CT) between the anterior abdominal skin and the back skin (U-APD) and the maximum horizontal distance of a plane at a right angle to U-APD (U-TD) were measured at the umbilicus. The distance between the anterior abdominal skin and the root of the celiac artery (CAD) and the distance of a horizontal plane at a right angle to CAD (CATD) were measured at the root of the celiac artery. The CA depth ratio (CAD/CATD) was calculated.</p> <p>Results</p> <p>POPF occurred in 7 patients (14.0%) and was associated with a higher BMI, longer CAD, and higher CA depth ratio. However, CATD, U-APD, and U-TD did not differ significantly between patients with and those without POPF. Logistic-regression analysis revealed that a high BMI (≥25) and a high CA depth ratio (≥0.370) independently predicted the occurrence of POPF (odds ratio = 19.007, p = 0.002; odds ratio = 13.656, p = 0.038, respectively).</p> <p>Conclusion</p> <p>Surgical procedures such as total gastrectomy with splenectomy should be very carefully executed in obese patients or patients with a deep abdominal cavity to decrease the risk of postoperative pancreatic fistula. BMI and body shape can predict the risk of POPF simply by CT.</p

    Candida albicans Possesses Sap7 as a Pepstatin A-Insensitive Secreted Aspartic Protease

    Get PDF
    BACKGROUND: Candida albicans, a commensal organism, is a part of the normal flora of healthy individuals. However, once the host immunity is compromised, C. albicans opportunistically causes recurrent superficial or fatal systemic candidiasis. Secreted aspartic proteases (Sap), encoded by 10 types of SAP genes, have been suggested to contribute to various virulence processes. Thus, it is important to elucidate their biochemical properties for better understanding of the molecular mechanisms that how Sap isozymes damage host tissues. METHODOLOGY/PRINCIPAL FINDINGS: The SAP7 gene was cloned from C. albicans SC5314 and heterogeneously produced by Pichia pastoris. Measurement of Sap7 proteolytic activity using the FRETS-25Ala library showed that Sap7 was a pepstatin A-insensitive protease. To understand why Sap7 was insensitive to pepstatin A, alanine substitution mutants of Sap7 were constructed. We found that M242A and T467A mutants had normal proteolytic activity and sensitivity to pepstatin A. M242 and T467 were located in close proximity to the entrance to an active site, and alanine substitution at these positions widened the entrance. Our results suggest that this alteration might allow increased accessibility of pepstatin A to the active site. This inference was supported by the observation that the T467A mutant has stronger proteolytic activity than the wild type. CONCLUSIONS/SIGNIFICANCE: We found that Sap7 was a pepstatin A-insensitive protease, and that M242 and T467 restricted the accessibility of pepstatin A to the active site. This finding will lead to the development of a novel protease inhibitor beyond pepstatin A. Such a novel inhibitor will be an important research tool as well as pharmaceutical agent for patients suffering from candidiasis

    Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA)

    Get PDF
    Polymicrobial biofilms are an understudied and a clinically relevant problem. This study evaluates the interaction between C. albicans, and methicillin- susceptible (MSSA) and resistant (MRSA) S. aureus growing in single- and dual-species biofilms. Single and dual species adhesion (90 min) and biofilms (12, 24, and 48 h) were evaluated by complementary methods: counting colony-forming units (CFU mL-1), XTT-reduction, and crystal violet staining (CV). The secretion of hydrolytic enzymes by the 48 h biofilms was also evaluated using fluorimetric kits. Scanning electron microscopy (SEM) was used to assess biofilm structure. The results from quantification assays were compared using two-way ANOVAs with Tukey post-hoc tests, while data from enzymatic activities were analyzed by one-way Welch-ANOVA followed by Games-Howell post hoc test ( = 0.05). C. albicans, MSSA and MRSA were able to adhere and to form biofilm in both single or mixed cultures. In general, all microorganisms in both growth conditions showed a gradual increase in the number of cells and metabolic activity over time, reaching peak values between 12 h and 48 h (<0.05). C. albicans single- and dual-biofilms had significantly higher total biomass values (<0.05) than single biofilms of bacteria. Except for single MRSA biofilms, all microorganisms in both growth conditions secreted proteinase and phospholipase-C. SEM images revealed extensive adherence of bacteria to hyphal elements of C. albicans. C. albicans, MSSA, and MRSA can co-exist in biofilms without antagonism and in an apparent synergistic effect, with bacteria cells preferentially associated to C. albicans hyphal forms.CNPq (Council for Technical and Scientific Development) (Grant 400658/2012-7)Fundação para a Ciência e Tecnologia (FCT), Portugal (SFRH/BPD/71076/2010)CAPES(Coordination for the Improvement of Higher Level Personnel
    corecore