418 research outputs found

    Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on distorted fcc lattice

    Full text link
    The Berry phase due to the spin wavefunction gives rise to the orbital ferromagnetism and anomalous Hall effect in the non-coplanar antiferromagnetic ordered state on face centered cubic (fcc) lattice once the crystal is distorted perpendicular to (1,1,1) or (1,1,0)- plane. The relevance to the real systems γ\gamma-FeMn and NiS2_2 is also discussed.Comment: 4 pages, 3 figure

    Theory of extraordinary optical transmission through subwavelength hole arrays

    Full text link
    We present a fully three-dimensional theoretical study of the extraordinary transmission of light through subwavelength hole arrays in optically thick metal films. Good agreement is obtained with experimental data. An analytical minimal model is also developed, which conclusively shows that the enhancement of transmission is due to tunneling through surface plasmons formed on each metal-dielectric interfaces. Different regimes of tunneling (resonant through a ''surface plasmon molecule", or sequential through two isolated surface plasmons) are found depending on the geometrical parameters defining the system.Comment: 4 pages, 4 figure

    Weak antiferromagnetism due to Dzyaloshinskii-Moriya interaction in Ba3_3Cu2_2O4_4Cl2_2

    Full text link
    The antiferromagnetic insulating cuprate Ba3_3Cu2_2O4_4Cl2_2 contains folded CuO2_2 chains with four magnetic copper ions (S=1/2S=1/2) per unit cell. An underlying multiorbital Hubbard model is formulated and the superexchange theory is developed to derive an effective spin Hamiltonian for this cuprate. The resulting spin Hamiltonian involves a Dzyaloshinskii-Moriya term and a more weak symmetric anisotropic exchange term besides the isotropic exchange interaction. The corresponding Dzyaloshinskii-Moriya vectors of each magnetic Cu-Cu bond in the chain reveal a well defined spatial order. Both, the superexchange theory and the complementary group theoretical consideration, lead to the same conclusion on the character of this order. The analysis of the ground-state magnetic properties of the derived model leads to the prediction of an additional noncollinear modulation of the antiferromagnetic structure. This weak antiferromagnetism is restricted to one of the Cu sublattices.Comment: 13 pages, 1 table, 4 figure

    Metal-insulator Crossover Behavior at the Surface of NiS_2

    Full text link
    We have performed a detailed high-resolution electron spectroscopic investigation of NiS2_2 and related Se-substituted compounds NiS2x_{2-x}Sex_x, which are known to be gapped insulators in the bulk at all temperatures. A large spectral weight at the Fermi energy of the room temperature spectrum, in conjunction with the extreme surface sensitivity of the experimental probe, however, suggests that the surface layer is metallic at 300 K. Interestingly, the evolution of the spectral function with decreasing temperature is characterized by a continuous depletion of the single-particle spectral weight at the Fermi energy and the development of a gap-like structure below a characteristic temperature, providing evidence for a metal-insulator crossover behavior at the surfaces of NiS2_2 and of related compounds. These results provide a consistent description of the unusual transport properties observed in these systems.Comment: 12 pages, 3 figure

    Associations of Genetic Factors, Educational Attainment, and Their Interaction With Kidney Function Outcomes

    Get PDF
    Both genetic predisposition and low educational attainment (EA) are associated with higher risk of chronic kidney disease. We examined the interaction of EA and genetic risk in kidney function outcomes. We included 3,597 participants from the Prevention of Renal and Vascular End-Stage Disease Cohort Study, a longitudinal study in a community-based sample from Groningen, the Netherlands (median follow-up, 11 years; 1997-2012). Kidney function was approximated by obtaining estimated glomerular filtration rate (eGFR) from serum creatinine and cystatin C. Individual longitudinal linear eGFR trajectories were derived from linear mixed models. Genotype data on 63 single-nucleotide polymorphisms, with known associations with eGFR, were used to calculate an allele-weighted genetic score (WGS). EA was categorized into high, medium, and low. In ordinary least squares analysis, higher WGS and lower EA showed additive effects on reduced baseline eGFR; the interaction term was nonsignificant. In analysis of eGFR decline, the significant interaction term suggested amplification of genetic risk by low EA. Adjustment for known renal risk factors did not affect our results. This study presents the first evidence of gene-environment interaction between EA and a WGS for eGFR decline and provides population-level insights into the mechanisms underlying socioeconomic disparities in chronic kidney disease

    Assembly of a Three-Dimensional Multitype Bronchiole Coculture Model Using Magnetic Levitation

    Get PDF
    A longstanding goal in biomedical research has been to create organotypic cocultures that faithfully represent native tissue environments. There is presently great interest in representative culture models of the lung, which is a particularly challenging tissue to recreate in vitro. This study used magnetic levitation in conjunction with magnetic nanoparticles as a means of creating an organized three-dimensional (3D) coculture of the bronchiole that sequentially layers cells in a manner similar to native tissue architecture. The 3D coculture model was assembled from four human cell types in the bronchiole: endothelial cells, smooth muscle cells (SMCs), fibroblasts, and epithelial cells (EpiCs). This study represents the first effort to combine these particular cell types into an organized bronchiole coculture. These cell layers were first cultured in 3D by magnetic levitation, and then manipulated into contact with a custom-made magnetic pen, and again cultured for 48 h. Hematoxylin and eosin staining of the resulting coculture showed four distinct layers within the 3D coculture. Immunohistochemistry confirmed the phenotype of each of the four cell types and showed organized extracellular matrix formation, particularly, with collagen type I. Positive stains for CD31, von Willebrand factor, smooth muscle a-actin, vimentin, and fibronectin demonstrate the maintenance of the phenotype for endothelial cells, SMCs, and fibroblasts. Positive stains for mucin-5AC, cytokeratin, and E-cadherin after 7 days with and without 1% fetal bovine serum showed that EpiCs maintained the phenotype and function. This study validates magnetic levitation as a method for the rapid creation of organized 3D cocultures that maintain the phenotype and induce extracellular matrix formation

    Neutron Scattering Study of Spin Density Wave Order in the Superconducting State of Excess-Oxygen-Doped La2CuO4+y

    Full text link
    We report neutron scattering measurements of spin density wave order within the superconducting state of a single crystal of predominately stage-4 La2CuO4+y with a Tc(onset) of 42 K. The low temperature elastic magnetic scattering is incommensurate with the lattice and is characterized by long-range order in the copper-oxide plane with the spin direction identical to that in the insulator. Between neighboring planes, the spins exhibit short-range correlations with a stacking arrangement reminiscent of that in the undoped antiferromagnetic insulator. The elastic magnetic peak intensity appears at the same temperature within the errors as the superconductivity, suggesting that the two phenomena are strongly correlated. These observations directly reveal the persistent influence of the antiferromagnetic order as the doping level increases from the insulator to the superconductor. In addition, our results confirm that spin density wave order for incommensurabilities near 1/8 is a robust feature of the La2CuO4-based superconductors.Comment: 14 pages, LaTeX, includes 8 figure

    Direct Observation of a One Dimensional Static Spin Modulation in Insulating La1.95Sr0.05CuO4

    Full text link
    We report the results of an extensive elastic neutron scattering study of the incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an insulating spin glass at low temperatures. The present neutron scattering experiments on the same x=0.05 crystal employ a narrower instrumental Q-resolution and thereby have revealed that the crystal has only two orthorhombic twins at low temperatures with relative populations of 2:1. We find that, in a single twin, only two satellites are observed at (1, +/-0.064, L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only along the orthorhombic b*-axis. This demonstrates unambiguously that La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low temperatures, consistent with certain stripe models. We have also reexamined the x=0.04 crystal that previously was reported to show a single commensurate peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the x=0.04 sample in fact has the same IC structure as the x=0.05x=0.05 sample. The incommensurability parameter d for x=0.04 and 0.05, where d is the distance from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear relation d=x. These results demonstrate that the insulator to superconductor transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is coincident with a transition from diagonal to collinear static stripes at low temperatures thereby evincing the intimate coupling between the one dimensional spin density modulation and the superconductivity.Comment: 9 pages 8 figure

    Two-stage spin-flop transitions in S = 1/2 antiferromagnetic spin chain BaCu_2Si_2O_7

    Full text link
    Two-stage spin-flop transitions are observed the in quasi-one-dimensional antiferromagnet, BaCu2{}_2Si2{}_2O7{}_7. A magnetic field applied along the easy axis induces a spin-flop transition at 2.0 T followed by a second transition at 4.9 T. The magnetic susceptibility indicates the presence of Dzyaloshinskii-Moriya (DM) antisymmetric interactions between the intrachain neighboring spins. We discuss a possible mechanism whereby the geometrical competition between DM and interchain interactions, as discussed for the two-dimensional antiferromagnet La2{}_2CuO4{}_4, causes the two-stage spin-flop transitions.Comment: 5 pages, 3 figures (included), accepted for publication in Phys. Rev. Let

    Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects

    Full text link
    We revisit a problem of Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single bond in cuprates specifying the local spin-orbital contributions to Dzyaloshinsky vector focusing on the oxygen term. The Dzyaloshinsky vector and respective weak ferromagnetic moment is shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. The intermediate oxygen 17^{17}O Knight shift is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic field. We predict the effect of strongstrong oxygen weak antiferromagnetism in edge-shared CuO2_2 chains due to uncompensated oxygen Dzyaloshinsky vectors. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly induced by Dzyaloshinsky-Moriya coupling.Comment: 12 pages, 2 figures, submitted to JET
    corecore