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Both genetic predisposition and low educational attainment (EA) are associated with higher risk of chronic
kidney disease. We examined the interaction of EA and genetic risk in kidney function outcomes. We included
3,597 participants from the Prevention of Renal and Vascular End-Stage Disease Cohort Study, a longitudinal
study in a community-based sample from Groningen, the Netherlands (median follow-up, 11 years; 1997–2012).
Kidney function was approximated by obtaining estimated glomerular filtration rate (eGFR) from serum creatinine
and cystatin C. Individual longitudinal linear eGFR trajectories were derived from linear mixed models. Genotype
data on 63 single-nucleotide polymorphisms, with known associations with eGFR, were used to calculate an
allele-weighted genetic score (WGS). EA was categorized into high, medium, and low. In ordinary least squares
analysis, higher WGS and lower EA showed additive effects on reduced baseline eGFR; the interaction term was
nonsignificant. In analysis of eGFR decline, the significant interaction term suggested amplification of genetic risk
by low EA. Adjustment for known renal risk factors did not affect our results. This study presents the first evidence
of gene-environment interaction between EA and a WGS for eGFR decline and provides population-level insights
into the mechanisms underlying socioeconomic disparities in chronic kidney disease.

chronic kidney disease; educational attainment; genetic risk; interaction; kidney function

Abbreviations: BMI, body mass index; CKD, chronic kidney disease; EA, educational attainment; eGFR, estimated glomerular
filtration rate; GWAS, genome-wide association study; PREVEND, Prevention of Renal and Vascular End-Stage Disease; SBP,
systolic blood pressure; SE, standard error; SNP, single-nucleotide polymorphism; UAE, urinary albumin excretion; WGS,
weighted genetic score.

Chronic kidney disease (CKD) is a heterogeneous group
of disorders characterized by sustained kidney dysfunction
and/or signs of kidney damage (1). CKD is associated with
cardiovascular morbidity and all-cause mortality (2). It can
eventually progress to end-stage kidney disease, necessitat-
ing the start of renal replacement therapy. The incidence of
CKD is increasing, posing a major global health challenge
(3–5).

Over the past 2 decades, evidence has accumulated for
a socioeconomic gradient in CKD: Low educational attain-
ment (EA), as an indicator of low socioeconomic status,
is associated with reduced kidney function (according to
estimated glomerular filtration rate, eGFR) and with higher

rates of kidney damage (according to urinary albumin excre-
tion, UAE) (6, 7). Recent data suggest that indicators of
socioeconomic status including EA are linked with CKD
through poor health behaviors (e.g., smoking, diet, seden-
tary time), higher prevalence of known clinical risk factors
(hypertension, diabetes, hypercholesterolemia, obesity), and
poor health-care access (8, 9), each contributing to an envi-
ronment that is deleterious for kidney health.

In addition to environmental factors, there is strong
evidence for a genetic influence on CKD. Familial clus-
tering is observed in CKD (10–13), and heritability of
CKD-defining traits has been estimated to be 36%–75%.
Further evidence is provided by genome-wide association
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studies (GWAS) that identified >60 single-nucleotide-
polymorphisms (SNPs) associated with creatinine-based
eGFR (eGFRcrea) (14). Genetic scores constructed from
these SNPs represent a genetic component to kidney func-
tion and thus can be interpreted as a proxy of genetic liability
to CKD (15–17).

Some evidence exists, albeit conflicting, that higher edu-
cation counteracts the genetic risk of diabetes (18, 19) and
obesity (18, 20, 21), both important determinants of CKD.
Therefore, it is possible that higher education also counter-
acts genetic risk of CKD, or conversely, that low education
amplifies the genetic risk of CKD. Uncovering modify-
ing effects of education on genetic risk might facilitate
improved risk stratification based on education and genetics.
Furthermore, knowledge of modifying effects of education
provides support for public health policies (e.g., in managing
purported downstream effects of low education to improve
kidney outcomes). The joint associations of education and
genetic factors have not previously been examined in the
context of kidney disease. Thus, our aim was to investigate
the interaction between education and genetic predisposition
for CKD in the general population. Specifically, we aimed
to test the hypothesis that lower EA amplifies genetic risk of
reduced kidney function.

METHODS

Study sample and design

We used data from the Prevention of Renal and Vascular
End-Stage Disease (PREVEND) Cohort study. PREVEND
was initiated to investigate the natural course of increased
urinary albumin levels and its association with renal and vas-
cular outcomes. Details have been described elsewhere (22).
Briefly, 8,592 individuals, sampled from the general popula-
tion of Groningen, the Netherlands, underwent an extensive
baseline examination between 1997–1998. Four follow-up
examinations were completed in 2003, 2006, 2008, and
2012. All subjects gave written informed consent. PRE-
VEND was approved by the medical ethics committee of
the University Medical Center Groningen and conducted in
accordance with the Helsinki Declaration guidelines. For
this study, we used the subset of participants that was geno-
typed (n = 3,649). Given that participants might receive
education into their 20s, we excluded those aged <30 years
(n = 52) from the analyses, resulting in n = 3,597.

Measurements

Kidney function. Kidney function was approximated by
eGFR from creatinine and cystatin C. Measurement of
serum creatinine was performed by an enzymatic method
on a Roche Modular analyzer using reagents and calibrators
from Roche (Roche Diagnostics, Mannheim, Germany),
traceable to isotope dilution mass spectrometry, with intra-
and interassay coefficients of variation of 0.9% and 2.9%,
respectively. Serum cystatin C concentration was measured
by a Gentian cystatin C Immunoassay (Gentian AS, Moss,
Norway) on a Modular analyzer (Roche Diagnostics). Cys-
tatin C was calibrated directly using the standard supplied

by the manufacturer (traceable to the International Feder-
ation of Clinical Chemistry Working Group for Standard-
ization of Serum Cystatin C) (23). The intra- and interassay
coefficients of variation were <4.1% and <3.3%, respec-
tively. Serum creatinine and serum cystatin C were deter-
mined in a single run to avoid laboratory day-to-day
variation. We calculated eGFR from both serum creatinine
and serum cystatin C, using the corresponding Chronic
Kidney Disease–Epidemiology collaboration (CKD-EPI)
equation (24). Outliers exceeding 4 standard deviations from
the mean were excluded.

Genotyping and genetic risk score calculation. Geno-
typing details for PREVEND were described previously
(17). Briefly, genotyping was performed on the Illumina
CytoSNP-12 v2 chip (Illumina, San Diego, California).
Samples with call rate <95%, duplicates, and sex discrep-
ancies were excluded. Markers with call rate >95%, Hardy-
Weinberg equilibrium P ≥ 10−5, and minor allele frequency
≥1% were included. Variants were imputed to 1000 Ge-
nomes (https://www.internationalgenome.org/home), Phase
1 version 3, using Minimac software (25). To account for
population stratification, principal component analysis was
performed (26); the resulting principal components repre-
sent possible population substructures in PREVEND. In
order to remove ethnic outliers, samples with a z score of
>3 for any of the first 5 principal components with the
highest eigen values were excluded. From the resulting
GWAS data, we extracted genotypes of 63 known eGFR
SNPs identified in a meta-analysis of GWAS on eGFRcrea
in European populations (14). We constructed a weighted
genetic score (WGS) comprising these SNPs. Per individual,
effect alleles were weighted for their published effect sizes
and summed. We then standardized the scores by subtracting
the population mean score and dividing by the population
standard deviation. Effect alleles were those reported to
associate with lower eGFR, thus a higher WGS reflects
genetic predisposition toward lower kidney function.

Educational attainment. Educational attainment (EA) was
assessed with self-report questionnaires. EA levels specific
to the Netherlands were mapped to the International Stan-
dard Classification of Education (27). We then categorized
EA into low (no, primary, basic vocational, and secondary
education, corresponding to International Standard Classifi-
cation of Education levels 0–2), medium (senior secondary
vocational and general senior secondary education, Interna-
tional Standard Classification of Education levels 3–4), and
high (higher professional and higher academic education,
International Standard Classification of Education levels 5–
6). International Standard Classification of Education levels
were imputed to US years of schooling. High EA was the
reference category in all analyses.

Covariates. We adjusted for age, age2, and sex. To mini-
mize potential confounding by population stratification, we
additionally adjusted for the first 10 genetic principal com-
ponents. In longitudinal analyses, we additionally adjusted
for baseline eGFR. Furthermore, we explored models that
include the renal risk factors, body mass index (BMI, cal-
culated as weight (kg)/height (m)2), systolic blood pressure
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(SBP), glucose, total cholesterol, and smoking status (never-
smoker, former smoker, current smoker), each measured
at baseline. Furthermore, we adjusted for natural log-
transformed urinary albumin excretion (lnUAE), an indi-
cator of kidney damage, measured in two 24-hour urine
collections at baseline. In sensitivity analyses, we adjusted
for hypertension and diabetes rather than SBP and glucose.
For continuous variables, outliers exceeding 4 standard devi-
ations from the mean were excluded.

Statistical analyses

All analyses were performed using R, version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria) (28).

To assess the explained variance of eGFR by the WGS,
conditional on age, age2, sex, and the first 10 principal com-
ponents, �R2

adjusted was computed from nested ordinary
least squares regression models using the lm() function from
the stats R package. We tested associations between the
WGS and EA using 1-way analysis of variance implemented
in the aov() function from the stats R package.

Cross-sectional analyses, with baseline eGFR as outcome,
were performed using ordinary least squares regression
analysis using the lm() function implemented in the stats
R package. For longitudinal analyses, we performed a 2-
step procedure. First, we modeled linear trajectories of
eGFR using linear mixed models implemented in the lme4
R package (29), with a random intercept and a random slope
for time. Individual trajectories of eGFR change were then
extracted and used as outcome variables (i.e., annual eGFR
change) in ordinary least squares regression analysis. For
both cross-sectional analyses and longitudinal analyses,
10 models were constructed with the main effects of the
WGS and EA (models 1–10), in addition to their interaction
term, and varying degrees of covariate adjustment (see Web
Table 1, available at https://doi.org/10.1093/aje/kwaa237,
for model details). Contribution of the WGS × EA inter-
action term was assessed using model coefficients for sepa-
rate EA levels (low EA, medium EA, and the interaction of
each with the WGS, with high EA as reference category),
and computing the difference in adjusted explained variance
(�R2

adjusted) between 2 nested models (with and without
interaction term). To assess significance of the overall inter-
action term, we used an F test using the anova() function
from the stats R package, through which we compared
model fit between 2 nested models. We used linear regres-
sion models; hence, interaction was assessed on the addi-
tive scale. A significant P value for the interaction term
indicates departure from additivity. Finally, EA-stratified
models, with varying degrees of covariate adjustment, were
constructed (models 11–15). For all models, we performed
complete-case analysis. We applied a 2-sided significance
threshold of α = 0.05 unless otherwise specified.

RESULTS

Baseline characteristics

Baseline characteristics of participants, according to cat-
egories of EA, are presented in Table 1. Lower EA was

generally associated with a less-favorable renal risk profile
(lower eGFR, higher BMI, higher SBP, higher glucose,
higher cholesterol, and higher prevalence of smoking).

We regressed baseline eGFR on the WGS to obtain a crude
association. The association of the WGS with baseline eGFR
was modest but highly significant (B = −1.68 (standard error
(SE), 0.29), R2

adjusted = 0.010; P = 8.6 × 10−9).
In Web Figure 1, we show a plot of WGS distribution

by categories of EA. The WGS was normally and equally
distributed in each EA category. The mean WGS did not sig-
nificantly differ between EA categories (F(2, 3,594) = 0.455;
P = 0.635).

Interaction analyses

Cross-sectional analysis. A plot of baseline eGFR by the
WGS and strata of EA is presented in Figure 1. On visual
inspection of this data, the association of the WGS with
eGFR appeared to be consistent across strata of EA; hence,
we anticipated that the term for interaction between the
WGS and EA in our models would not be significant. In
unadjusted models (models 1–2), both the WGS and EA
were independently associated with eGFR (Table 2). A 1-
standard-deviation increase in the WGS was associated with
1.61-mL/minute/1.73 m2 lower eGFR (model 1, B = −1.61
(SE, 0.28); P = 1.5 × 10−8), while those with low EA
were observed to have the lowest mean eGFR (model 1,
low vs. high EA, B = −8.74 (SE, 0.67); P = 5.9 × 10−38

(Table 2)). Addition of an interaction term (WGS × EA)
did not contribute to the model (model 2 vs. model 1, P =
0.512 (Table 3)). Adjustment for covariates (models 3–4;
age, age2, sex, and the first 10 principal components) did
not affect the association of the WGS with baseline eGFR.
However, the association between EA and baseline eGFR
disappeared due to strong confounding by age. Inclusion
of additional covariates (models 5–8) did not change our
conclusions, although, counterintuitively, low EA was sig-
nificantly associated with higher eGFR in these models.
The association of the WGS with baseline eGFR appeared
smaller in the low-EA stratum (Figure 2), but the interaction
was nonsignificant for all models.

Longitudinal analysis. Median follow-up duration was 11
years (interquartile range, 4.6–11.9 years). In the total pop-
ulation, the average change in eGFR was −0.927 (stan-
dard deviation, 0.385) mL/minute/1.73 m2 per year. A plot
of eGFR change by the WGS and strata of EA is pre-
sented in Figure 1. In this figure, the WGS is shown to
have its strongest association with eGFR change in those
with low EA (Figure 1C). In those with medium or high EA
(Figure 1A–1B), the WGS had no apparent association with
eGFR change. A trend in mean eGFR change was observed
across EA levels, with those who had lower EA having faster
rates of decline on average.

In unadjusted models (models 1–2), a 1-standard-
deviation increase in the WGS was associated with 0.016-
mL/minute/1.73 m2 per year faster eGFR decline (model
1, B = −0.016 (SE, 0.007); P = 0.014, Table 2), and EA
(model 1, low vs. high EA, B = −0.125 (SE, 0.016);
P = 3.3 × 10−15) was also independently associated with
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Table 1. Baseline Characteristics Overall and According to Educational Attainment, Prevention of Renal and Vascular End-Stage Disease, the
Netherlands, 1997–2012

Educational Attainment

Characteristic
Total (n = 3,597)

Low (n = 1,673) Medium (n = 889) High (n = 1,035)

Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) %

Age, years 50 (40–60)a 55 (46–65)a 46 (37–56)a 44 (37–51)a

Male sex 52 49 56 53

eGFR, mL/minute/1.73 m2 94.7 (17.0) 90.5 (17.3) 97.1 (17.0) 99.3 (14.8)

US years of schooling 12.9 (5.0) 8.5 (1.5) 13 (0) 20 (0)

WGS 0 (1.0) 0.02 (1.0) −0.02 (1.0) −0.01 (1.0)

Number of effect alleles 62.3 (4.9) 62.3 (4.9) 62.3 (5.1) 62.3 (4.8)

SBP, mm Hg 129 (19.7) 133 (20) 128 (20) 124 (18)

Hypertension 35 46 31 21

Glucose, mmol/L 4.8 (0.8) 5.0 (0.8) 4.7 (0.7) 4.6 (0.6)

Type 2 diabetes 4.0 5.7 3.6 1.7

Body mass indexb 26 (4.1) 27 (4.2) 26 (4.0) 25 (3.5)

Total cholesterol, mmol/L 5.7 (1.1) 5.9 (1.1) 5.6 (1.1) 5.4 (1.0)

Never smoker 27 23 26 36

Former smoker 37 37 38 37

Current smoker 35 40 36 27

Follow-up time, years 11.0 (4.6–11.9)a 9.9 (4.2–11.6)a 11.1 (4.8–12.2)a 11.2 (6.2–12.4)a

Abbreviations: eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; SD, standard deviation; WGS, weighted genetic risk
score.

a Values are expressed as median (interquartile range).
b Weight (kg)/height (m)2.

rate of kidney function decline. Adjustment for covariates
(models 3–4; age, age2, sex, and the first 10 genetic principal
components) increased the association of the WGS with
eGFR change (model 3, B = −0.027 (SE, 0.006); P = 2.3 ×
10−5), while attenuating the association of EA with eGFR
change (model 3, low vs. high EA, B = −0.054 (SE, 0.016);
P = 7.9 × 10−4). A WGS × EA interaction term was in
the expected direction (model 4, low vs. high EA, B =
−0.036 (SE, 0.015); P = 0.017), suggesting that the joint
association of the WGS and EA is greater than the sum of
their main associations. The contribution of the overall term
for interaction between the WGS and EA was modest but
significant (model 4 vs. model 3, P = 0.036 (Table 3)).

The influence of potential mediators (i.e., BMI, SBP, glu-
cose, total cholesterol, and smoking status) on the interaction
was assessed in our final models (models 5–6). Addition of
these risk factors did not affect the association between the
WGS and eGFR change (model 5, B = −0.026 (SE, 0.006);
P = 3.7 × 10−5), whereas the association of EA was slightly
attenuated (model 5, low vs. high EA, B = −0.056 (SE,
0.017); P = 8.5 × 10−4), suggesting potential mediation by
these risk factors (Web Table 1). Potential mediation was
further supported by the finding that the overall interaction
effect was only borderline significant after addition of these

risk factors (model 6 versus model 5, P = 0.062 (Table 3)),
although the interaction effect of the WGS with low ver-
sus high EA was not attenuated and remained nominally
significant (model 6, B = −0.034 (SE, 0.015); P = 0.027)
(Web Table 1). Adjustment for lnUAE did not affect our
results (models 7–8). The WGS most strongly associated
with annual eGFR change in the low-EA stratum (Figure 2).

Sensitivity analysis. The WGS did not show significantly
different distributions between categories of EA. However,
Figure 1 and Web Figure 1 are suggestive of slight overrep-
resentation of a higher WGS in those with lower EA and a
lower WGS in those with higher EA. To minimize bias due
to potentially influential observations, we excluded 8 obser-
vations that exceeded a more stringent cutoff of 3 standard
deviations from the mean. These sensitivity analyses yielded
essentially the same results as our main analyses, although
significance decreased slightly due to reduced statistical
power (data not shown).

Furthermore, we repeated all analyses for eGFR estimated
from serum creatinine only (eGFRcrea), and from serum
cystatin C only (eGFRcysc). Results were generally consis-
tent with our main analysis, with EA being more strongly
associated with eGFRcysc than with eGFRcrea. Similarly,
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Figure 1. Plots of estimated glomerular filtration rate (eGFR) versus a weighted genetic score for reduced eGFR, according to educational
attainment, Prevention of Renal and Vascular End-Stage Disease, the Netherlands, 1997–2012. Upper panels show plots of cross-sectional
eGFR (mL/minute/1.73 m2) versus a weighted genetic score, stratified by levels of educational attainment: high (A), medium (B), and low (C).
Lower panels show plots of annual change in eGFR (mL/minute/1.73 m2 per year) versus a weighted genetic score, stratified by levels of
educational attainment: high (D), medium (E), and low (F). Regression lines with 95% confidence interval are derived from unadjusted ordinary
linear regression.

interaction effects between the WGS and EA were more pro-
nounced for eGFRcysc than for eGFRcrea (data not shown).

We repeated the interaction analyses using a linear mixed
model only. Here, despite some minor discrepancy with
longitudinal estimates from ordinary least squares regression
analysis, effect estimates were generally and directionally
consistent with the ordinary least squares analysis (Web
Table 2), and a 3-way interaction term to assess the modi-
fying effect of EA on WGS in eGFR change (WGS × EA ×
time) was again significant (Web Table 3).

Adjustment for hypertension and diabetes, rather than
SBP and glucose, did not affect our results (model 9–10,
Table 3, Web Tables 1–3).

DISCUSSION

In the present study, we investigated the associations of
genetic factors (summarized by a WGS) and EA, as well
as the interaction between the WGS and EA, with kidney
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Table 3. Comparison of Nested Ordinary Least Squares Regression Models With and Without a Term for the Interaction of Weighted Genetic
Score and Educational Attainment, Prevention of Renal and Vascular End-Stage Disease, the Netherlands, 1997–2012

Model R2 R2
adj Residual df RSS �df F Statistic Pr(>F)a

eGFR

Model 1b 0.064 0.063 3,362 908,742

Model 2c 0.064 0.063 3,360 908,379 2 0.670 0.512

Model 3d 0.448 0.446 3,349 535,519

Model 4e 0.448 0.445 3,347 535,307 2 0.634 0.515

Model 5f 0.463 0.459 3,230 498,513

Model 6g 0.463 0.459 3,228 498,367 2 0.475 0.622

Model 7h 0.462 0.458 3,195 485,857

Model 8i 0.462 0.458 3,193 485,720 2 0.448 0.634

Model 9j,l 0.462 0.458 3,086 471,547

Model 10k,m 0.462 0.458 3,084 471,432 2 0.377 0.686

Annual eGFR changec

Model 1b 0.041 0.040 3,342 473.93

Model 2c 0.043 0.041 3,340 473.03 2 3.177 0.042

Model 3d 0.112 0.108 3,329 438.62

Model 4e 0.114 0.109 3,327 437.74 2 3.319 0.036

Model 5f 0.130 0.124 3,213 411.88

Model 6g 0.132 0.125 3,211 411.17 2 2.777 0.062

Model 7h 0.132 0.126 3,178 405.28

Model 8i 0.133 0.126 3,176 404.67 2 2.407 0.090

Model 9j,l 0.132 0.125 3,067 403.74

Model 10k,m 0.134 0.126 3,065 402.94 2 3.026 0.049

Abbreviations: df, degrees of freedom; EA, educational attainment; eGFR, estimated glomerular filtration rate; PC, principal components; R2,
model-explained variance; RSS, residual sum of squares; UAE, urinary albumin excretion; WGS, weighted genetic score.

a P values Pr(>F) derived from F test using analysis of variance between 2 nested models.
b Model 1: (WGS + EA)
c Model 2: model 1 + (WGS × EA)
d Model 3: WGS + EA + age + age2 + sex + genetic PC 1–10
e Model 4: model 3 + WGS × EA
f Model 5: WGS + EA + age + age2 + sex + PC 1–10 + BMI + SBP + glucose + total cholesterol + smoking
g Model 6: model 5 + WGS × EA
h Model 7: WGS + EA + age + age2 + sex + PC 1–10 + BMI + SBP + glucose + total cholesterol + smoking + lnUAE
i Model 8: model 7 + WGS × EA
j Model 9: WGS + EA + age + age2 + sex + PC 1–10 + BMI + hypertension + diabetes + total cholesterol + smoking + lnUAE
k Model 10: model 9 + WGS × EA
l Diabetes (fasting glucose >7 mmol/L or non-fasting glucose >11 mmol/L or pharmacy-reported antidiabetic medication or self-reported

diabetes) and hypertension (SBP >140 or DBP >90 or pharmacy-reported antihypertensive medication or self-reported hypertension)
mFor longitudinal analysis, baseline eGFR was included in each model.

function outcomes. We observed additive effects of the
WGS and EA for baseline eGFR in cross-sectional analyses,
although these were not robust to covariate adjustment. In
longitudinal analyses, low EA interacted with high WGS,
resulting in faster eGFR decline. This interaction suggests
an amplifying effect of low EA on genetic risk, and it
could not be explained by a less-favorable renal risk factor
profile in those with low EA (i.e., higher BMI, higher SBP,
higher glucose, higher cholesterol, and higher prevalence of
smoking).

In the present study, participants with low EA had similar
genetic risk of lower eGFR compared with those with higher
EA, given that the WGS was equally distributed to each
stratum of EA. However, the impact of genetic risk on
annual eGFR decline was observed to be larger in those with
low EA, resulting in a disproportionally fast eGFR decline
among the most vulnerable in terms of EA and genetic pre-
disposition. Low EA is unlikely to directly amplify genetic
risk of reduced eGFR. Rather, it might act through a range
of interrelated purported downstream effects of low EA,
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Figure 2. Multivariable-adjusted associations of the weighted genetic score with estimated glomerular filtration rate (eGFR) in strata of
educational attainment, Prevention of Renal and Vascular End-Stage Disease, the Netherlands, 1997–2012. Estimates of the associations,
presented as regression coefficients with 95% confidence intervals, of the weighted genetic score (per standard deviation) with cross-sectional
eGFR (mL/minute/1.73 m2) (A) and annual eGFR change (mL/minute/1.73 m2 per year) (B), derived from ordinary least squares regression
analysis in the entire study population and in strata of educational attainment (high, medium, low). The solid lines represent an estimate of the
interaction effect for the unadjusted model (model 11), while the dashed lines represent the interaction effect in the full model (model 15) if it were
linear. Model 11: weighted genetic score. Model 12: model 11 + age + age2 + sex + genetic principal components 1–10. Model 13: model 12 +
BMI + SBP + glucose + total cholesterol + smoking. Model 14: model 13 + lnUAE. Model 15: model 11 + BMI + hypertension + diabetes +
total cholesterol + smoking + lnUAE. For longitudinal analysis, baseline eGFR was included in each model.

such as lower income, poor health behavior, poor health-
care access, and higher prevalence of traditional renal risk
factors (8, 9). In our analyses, the interaction effect was not
explained by traditional renal risk factors. Therefore, other
factors likely exist that explain the interaction between EA
and a WGS. These might include factors with socioeco-
nomic gradients such as health literacy (30), occupational
exposures, and infections (31), whose influence might not
be captured by traditional risk factors.

In cross-sectional analyses, low EA was significantly
associated with higher eGFR (models 5–10), suggesting a

paradoxical protective effect of low EA on kidney function.
However, this is likely the result of overadjustment bias (32)
in these models, given that many of the covariates (e.g.,
hypertension and diabetes) are purported mediators in the
relationship of EA and eGFR (8, 9).

Each of the 63 SNPs that were identified in previous
GWAS on eGFRcrea (14) have small effect sizes. The WGS
aggregates these SNPs, thereby greatly increasing statisti-
cal power compared with using single SNP associations.
Therefore, the WGS is a practical summary score of genetic
risk for reduced kidney function. However, some limitations
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with regards to the WGS must be addressed. The WGS
explained only a small fraction of between-individual varia-
tion in eGFR in PREVEND. Sample sizes and thus power for
GWAS on eGFR have recently greatly increased, facilitating
the detection of over 200 additional genetic variants (33).
Using a more comprehensive WGS that includes these vari-
ants likely increases power to detect interactions. In addition,
participants with an equal WGS might have different under-
lying risk variants. Furthermore, by using a WGS in interac-
tion analysis, it is implicitly assumed that all genetic variants
included in the WGS have directionally consistent interac-
tion effects with EA. Another implicit assumption is that the
same set of genetic variants affect eGFR in each category
of EA. To check these assumptions, single SNP interaction
effects would need to be assessed, but this requires infeasibly
large sample sizes and is therefore beyond the scope of the
present study. Future research could include genome-wide
interaction studies to identify the specific genetic variants
whose associations with kidney function are modified by
EA. Similar studies were performed for blood pressure,
BMI, and lipids to identify genetic variants whose effect
was modified by smoking, alcohol use, and physical activity
(34–37).

For the longitudinal analyses, we reported results from
a 2-step method in which we used individual eGFR tra-
jectories, extracted from a linear mixed model, as the out-
come variable in ordinary least squares regression analysis.
This allows for straightforward estimation of model R2 and
intuitive interpretation of the WGS × EA 2-way interaction
term. The 2-step approach potentially comes at the cost of
introducing false precision in eGFR trajectories given that
random variation in eGFR measurements during follow-
up is ignored to an extent. This might explain the result
in previous study in PREVEND, of a WGS comprising
63 SNPs showing similar associations with eGFR change
compared with the present study but not reaching statistical
significance in linear mixed model analysis (17). Alterna-
tively, the associations of the WGS, EA, and the WGS ×
EA interaction term on eGFR change can also be modeled
in a single linear mixed model, taking into account the
random variation and correlation between eGFR measure-
ments. However, R2 estimation is not straightforward in
linear mixed models, and estimation of the interaction effect
on eGFR change requires modeling a 3-way interaction term
(WGS × EA × time), the interpretation of which is less
intuitive compared with that of a 2-way interaction term. We
performed sensitivity analyses using a linear mixed model
only. Notwithstanding some discrepancies with the ordinary
least squares analysis regarding effect size and statistical
significance, the results from linear mixed model were direc-
tionally consistent with ordinary least squares analysis, and
therefore our conclusions remain unchanged.

Our study adds to the literature on socioeconomic dis-
parities in CKD in that it is, to our knowledge, the first to
present evidence of gene-environment interaction between
a WGS (based on SNPs associated with eGFR) and EA.
Major strengths of this study include the availability of mul-
tiple eGFR estimates per individual, based on both serum
creatinine and cystatin C values, which were measured in 1
run, allowing precise estimation of glomerular filtration rate,

and the considerable follow-up duration. Several limitations,
other than those already discussed, need to be addressed.
First, the present study population consists exclusively of
participants of European ancestry, sampled from a relatively
high-income population (i.e., the population of Groningen,
the Netherlands). Therefore, the generalizability of these
findings to non-European, lower-income populations might
be limited. Second, the interaction effects of genetic risk
and EA on rate of kidney function decline that we found
are modest; replicability and generalizability of these results
to other populations is uncertain and therefore require val-
idation in independent samples. Under similar parameters,
the interaction effect could be replicated with a sample
size of approximately 5,000 (with 80% power at α = 0.05)
(Web Figure 2). Third, the observational nature of this study
precludes causal conclusions. Fourth, larger samples are
needed to examine whether the interaction between a WGS
and low EA results in increased rates of CKD. Finally, a
higher attrition rate was observed in those with low edu-
cation. This might have resulted in bias toward the null, or
underestimation of effect sizes, due to reduced power and
precision of kidney decline outcomes in this group.

Knowledge of the interaction that we found in our longi-
tudinal analyses is unlikely to be useful for risk stratification
for preventive medicine, due to the rather modest effect
sizes. Furthermore, given the population-based sample, our
findings might not translate into the clinic (i.e., in predicting
disease progression in CKD patients). However, our results
might inform public health policy given that they provide
insights into the mechanisms that underlie socioeconomic
disparities in CKD. For example, it is possible that down-
stream effects of low EA contribute to an environment that
activates genetic pathways that are detrimental for kidney
health. Conversely, deleterious genetic effects are suggested
to be completely mitigated by high EA and its downstream
effects, at least with regard to kidney function decline.
Future study is needed to identify which factors are respon-
sible for this modifying effect, given that these factors are
potential targets for intervention to reduce socioeconomic
disparities in CKD.

In conclusion, our findings provide population-level in-
sights on the mechanisms underlying socioeconomic dis-
parities in CKD. We observed that a WGS, as a summary
of genetic risk, and EA have independent associations with
the rate of kidney function decline. Furthermore, our results
suggest a subtle amplifying effect of low EA on genetic risk
of reduced eGFR. Traditional kidney risk factors that are
purported downstream effects of low EA (i.e., higher BMI,
higher SBP, higher glucose, higher cholesterol, and higher
prevalence of smoking) did not explain the amplifying effect
on the WGS, warranting further investigation.
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