8,100 research outputs found

    Visualisation of Pareto Front Approximation: A Short Survey and Empirical Comparisons

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Visualisation is an effective way to facilitate the analysis and understanding of multivariate data. In the context of multi-objective optimisation, comparing to quantitative performance metrics, visualisation is, in principle, able to provide a decision maker better insights about Pareto front approximation sets (e.g. the distribution of solutions, the geometric characteristics of Pareto front approximation) thus to facilitate the decision-making (e.g. the exploration of trade-off relationship, the knee region or region of interest). In this paper, we overview some currently prevalent visualisation techniques according to the way how data is represented. To have a better understanding of the pros and cons of different visualisation techniques, we empirically compare six representative visualisation techniques for the exploratory analysis of different Pareto front approximation sets obtained by four state-of-the-art evolutionary multi-objective optimisation algorithms on the classic DTLZ benchmark test problems. From the empirical results, we find that visual comparisons also follow the \textit{No-Free-Lunch} theorem where no single visualisation technique is able to provide a comprehensive understanding of the characteristics of a Pareto front approximation set. In other words, a specific type of visualisation technique is only good at exploring a particular aspect of the data.Royal Societ

    Evolution of In-Plane Magnetic Anisotropy In Sputtered FeTaN/TaN/FeTaN Sandwich Films

    Full text link
    FeTaN/TaN/FeTaN sandwich films, FeTaN/TaN and TaN/FeTaN bilayers were synthesized by using RF magnetron sputtering. The magnetic properties, crystalline structures, microstructures and surface morphologies of the as-deposited samples were characterized using angle-resolved M-H loop tracer, VSM, XRD, TEM, AES and AFM. An evolution of the in-plane anisotropy was observed with the changing thickness of the nonmagnetic TaN interlayer in the FeTaN/TaN/FeTaN sandwiches, such as the easy-hard axis switching and the appearing of biaxial anisotropy. It is ascribed to three possible mechanisms, which are interlayer magnetic coupling, stress, and interface roughness, respectively. Interlayer coupling and stress anisotropies may be the major reasons to cause the easy-hard axis switching in the sandwiches. Whereas, magnetostatic and interface anisotropies may be the major reasons to cause biaxial anisotropy in the sandwiches, in which magnetostatic anisotropy is the dominant one.Comment: 6 pages, 3 figure

    Resolving singular forces in cavity flow: Multiscale modeling from atoms to millimeters

    Full text link
    A multiscale approach for fluid flow is developed that retains an atomistic description in key regions. The method is applied to a classic problem where all scales contribute: The force on a moving wall bounding a fluid-filled cavity. Continuum equations predict an infinite force due to stress singularities. Following the stress over more than six decades in length in systems with characteristic scales of millimeters and milliseconds allows us to resolve the singularities and determine the force for the first time. The speedup over pure atomistic calculations is more than fourteen orders of magnitude. We find a universal dependence on the macroscopic Reynolds number, and large atomistic effects that depend on wall velocity and interactions.Comment: 4 pages,3 figure

    Evolution of superconductivity by oxygen annealing in FeTe0.8S0.2

    Full text link
    Oxygen annealing dramatically improved the superconducting properties of solid-state-reacted FeTe0.8S0.2, which showed only a broad onset of superconducting transition just after the synthesis. The zero resistivity appeared and reached 8.5 K by the oxygen annealing at 200\degree C. The superconducting volume fraction was also enhanced from 0 to almost 100%. The lattice constants were compressed by the oxygen annealing, indicating that the evolution of bulk superconductivity in FeTe0.8S0.2 was correlated to the shrinkage of lattice.Comment: 13 pages, 6 figure

    'Functional' inspiratory and core muscle training enhances running performance and economy.

    Get PDF
    We compared the effects of two 6-week high-intensity interval training interventions. Under the control condition (CON), only interval training was undertaken, whilst under the intervention condition (ICT), interval training sessions were followed immediately by core training, which was combined with simultaneous inspiratory muscle training - 'functional' IMT. Sixteen recreational runners were allocated to either ICT or CON groups. Prior to the intervention phase, both groups undertook a 4-week programme of 'foundation' IMT to control for the known ergogenic effect of IMT [30 inspiratory efforts at 50% maximal static inspiratory pressure (P0) per set, 2 sets.d, 6 d.wk]. The subsequent 6-week interval running training phase, consisted of 3-4 sessions.wk. In addition, the ICT group undertook four inspiratory-loaded core exercises [10 repetitions.set, 2 sets.d, inspiratory load set at 50% post-IMT P0] immediately after each interval training session. The CON group received neither core training nor functional IMT. Following the intervention phase, global inspiratory and core muscle functions increased in both groups (P<0.05), as evidenced by P0 and a sport-specific endurance plank test performance (SEPT), respectively. Compared to CON, the ICT group showed larger improvements in SEPT, running economy at the speed of the OBLA, and 1-hr running performance (3.04% vs 1.57%, P<0.05). The changes in these variables were inter-individually correlated (r≥0.57, n=16, P<0.05). Such findings suggest that the addition of inspiratory-loaded core conditioning into a high-intensity interval training program augments the influence of the interval program upon endurance running performance, and that this may be underpinned by an improvement in running economy

    Galilean invariance of lattice Boltzmann models

    Full text link
    It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments

    Oscillatory instability in a driven granular gas

    Full text link
    We discovered an oscillatory instability in a system of inelastically colliding hard spheres, driven by two opposite "thermal" walls at zero gravity. The instability, predicted by a linear stability analysis of the equations of granular hydrodynamics, occurs when the inelasticity of particle collisions exceeds a critical value. Molecular dynamic simulations support the theory and show a stripe-shaped cluster moving back and forth in the middle of the box away from the driving walls. The oscillations are irregular but have a single dominating frequency that is close to the frequency at the instability onset, predicted from hydrodynamics.Comment: 7 pages, 4 figures, to appear in Europhysics Letter

    High sensitivity nanoparticle detection using optical microcavities

    Get PDF
    We demonstrate a highly sensitive nanoparticle and virus detection method by using a thermal-stabilized reference interferometer in conjunction with an ultrahigh-Q microcavity. Sensitivity is sufficient to resolve shifts caused by binding of individual nanobeads in solution down to a record radius of 12.5 nm, a size approaching that of single protein molecules. A histogram of wavelength shift versus nanoparticle radius shows that particle size can be inferred from shift maxima. Additionally, the signal-to-noise ratio for detection of Influenza A virus is enhanced to 38:1 from the previously reported 3:1. The method does not use feedback stabilization of the probe laser. It is also observed that the conjunction of particle-induced backscatter and optical-path-induced shifts can be used to enhance detection signal-to-noise

    Magnetic anisotropy and magnetoresistance of sputtered [(FeTaN)/(TaN)](n) multilayers

    Full text link
    We studied the in-plane magnetic anisotropy of rf (radio frequency) sputtered [(FeTaN)/(TaN)](n) multilayers synthesized on Si substrates. In the multilayers where n=5, the FeTaN thickness is fixed at 30 nm and the thickness of TaN, t(TaN), is varied from 0 to 6.0 nm, we observed a clear trend that, with increasing t(TaN), the values of coercivity, grain size, and amplitude of maximum magnetoresistance (MR) of the samples all decrease first and then increase after reaching a minimum when t(TaN) is around 2.0-4.0 nm. This trend is also associated with an evolution of in-plane magnetic anisotropy, where the multilayers change from uniaxial anisotropy to biaxial at t(TaN) around 4.0 nm and above. We attribute the phenomena to the interlayer coupling effect of FeTaN films as a function of the coupling layer (TaN) thickness, rather than to the thickness dependence observed in single-layered FeTaN films, where the direction of easy axis switches 90degrees when the film is thicker than 300 nm. The in-plane anisotropy of the [(FeTaN)/(TaN)](n) multilayers also shows signs of oscillation when the number of coupling layers varies. The MR effects observed are mainly due to anisotropy MR (AMR), while the grain size and exchange coupling may also contribute to the change of maximum MR ratios in the multilayers with changing t(TaN)
    corecore