293 research outputs found
FORCED NONLINEAR OSCILLATOR IN A FRACTAL SPACE
A critical hurdle of a nonlinear vibration system in a fractal space is the inefficiency in modelling the system. Specifically, the differential equation models cannot elucidate the effect of porosity size and distribution of the periodic property. This paper establishes a fractal-differential model for this purpose, and a fractal Duffing-Van der Pol oscillator (DVdP) with two-scale fractal derivatives and a forced term is considered as an example to reveal the basic properties of the fractal oscillator. Utilizing the two-scale transforms and He-Laplace method, an analytic approximate solution may be attained. Unfortunately, this solution is not physically preferred. It has to be modified along with the nonlinear frequency analysis, and the stability criterion for the equation under consideration is obtained. On the other hand, the linearized stability theory is employed in the autonomous arrangement. Consequently, the phase portraits around the equilibrium points are sketched. For the non-autonomous organization, the stability criteria are analyzed via the multiple time scales technique. Numerical estimations are designed to confirm graphically the analytical approximate solutions as well as the stability configuration. It is revealed that the exciting external force parameter plays a destabilizing role. Furthermore, both of the frequency of the excited force and the stiffness parameter, execute a dual role in the stability picture
Period halving of Persistent Currents in Mesoscopic Mobius ladders
We investigate the period halving of persistent currents(PCs) of
non-interacting electrons in isolated mesoscopic M\"{o}bius ladders without
disorder, pierced by Aharonov-Bhom flux. The mechanisms of the period halving
effect depend on the parity of the number of electrons as well as on the
interchain hopping. Although the data of PCs in mesoscopic systems are
sample-specific, some simple rules are found in the canonical ensemble average,
such as all the odd harmonics of the PCs disappear, and the signals of even
harmonics are non-negative. {PACS number(s): 73.23.Ra, 73.23.-b, 68.65.-k}Comment: 6 Pages with 3 EPS figure
Fluorophore-Doped Core-Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer towards a Loss Compensation
Cataloged from PDF version of article.Plasmonics exhibits the potential to break the diffraction limit and bridge the gap between electronics and
photonics by routing and manipulating light at the nanoscale. However, the inherent and strong energy
dissipation present in metals, especially in the near-infrared and visible wavelength ranges, significantly
hampersthe applications in nanophotonics. Therefore, it is amajor challengetomitigatethe losses. One way
to compensate the losses is to incorporate gain media into plasmonics. Here, we experimentally show that
the incorporation of gain material into a local surface plasmonic system (Au/silica/silica dye core multishell
nanoparticles) leads to a resonant energy transfer from the gain media to the plasmon. The optimized
conditions for the largest loss compensation are reported. Both the coupling distance and the spectral
overlap arethe key factorsto determinetheresulting energy transfer. Theinterplay of these factors leadsto
a non-monotonous photoluminescence dependence as a function of the silica spacer shell thickness.
Nonradiativetransferrate is increased by morethan 3 orders of magnitude attheresonant condition, which
is key evidence of the strongest coupling occurring between the plasmon and the gain material
Measuring geometric phases of scattering states in nanoscale electronic devices
We show how a new quantum property, a geometric phase, associated with
scattering states can be exhibited in nanoscale electronic devices. We propose
an experiment to use interference to directly measure the effect of the new
geometric phase. The setup involves a double path interferometer, adapted from
that used to measure the phase evolution of electrons as they traverse a
quantum dot (QD). Gate voltages on the QD could be varied cyclically and
adiabatically, in a manner similar to that used to observe quantum adiabatic
charge pumping. The interference due to the geometric phase results in
oscillations in the current collected in the drain when a small bias across the
device is applied. We illustrate the effect with examples of geometric phases
resulting from both Abelian and non-Abelian gauge potentials.Comment: Six pages two figure
Regulation of MntH by a Dual Mn(II)- and Fe(II)-Dependent Transcriptional Repressor (DR2539) in Deinococcus radiodurans
The high intracellular Mn/Fe ratio observed within the bacteria Deinococcus radiodurans may contribute to its remarkable resistance to environmental stresses. We isolated DR2539, a novel regulator of intracellular Mn/Fe homeostasis in D. radiodurans. Electrophoretic gel mobility shift assays (EMSAs) revealed that DR2539 binds specifically to the promoter of the manganese acquisition transporter (MntH) gene, and that DR0865, the only Fur homologue in D. radiodurans, cannot bind to the promoter of mntH, but it can bind to the promoter of another manganese acquisition transporter, MntABC. β-galactosidase expression analysis indicated that DR2539 acts as a manganese- and iron-dependent transcriptional repressor. Further sequence alignment analysis revealed that DR2539 has evolved some special characteristics. Site-directed mutagenesis suggested that His98 plays an important role in the activities of DR2539, and further protein-DNA binding activity assays showed that the activity of H98Y mutants decreased dramatically relative to wild type DR2539. Our study suggests that D. radiodurans has evolved a very efficient manganese regulation mechanism that involves its high intracellular Mn/Fe ratio and permits resistance to extreme conditions
- …