25,161 research outputs found

    Absolute differential cross sections for electron-impact excitation of CO near threshold: II. The Rydberg states of CO

    Get PDF
    Absolute differential cross sections for electron-impact excitation of Rydberg states of CO have been measured from threshold to 3.7 eV above threshold and for scattering angles between 20° and 140°. Measured excitation functions for the b 3Σ+, B 1Σ+ and E 1π states are compared with cross sections calculated by the Schwinger multichannel method. The behaviour of the excitation functions for these states and for the j 3Σ+ and C 1Σ+ states is analysed in terms of negative-ion states. One of these resonances has not been previously reported

    Determinants of Real House Price Dynamics

    Get PDF
    We explore the dynamics of real house prices by estimating serial correlation and mean reversion coefficients from a panel data set of 62 metro areas from 1979-1995. The serial correlation and reversion parameters are then shown to vary cross sectionally with city size, real income growth, population growth, and real construction costs. Serial correlation is higher in metro areas with higher real income, population growth and real construction costs. Mean reversion is greater in large metro areas and faster-growing cities with lower construction costs. Empirically, substantial overshooting of prices can occur in high real construction cost areas, which have high serial correlation and low mean reversion, such as the coastal cities of Boston, New York, San Francisco, Los Angeles and San Diego.

    HD 152246 - a new high-mass triple system and its basic properties

    Full text link
    Analyses of multi-epoch, high-resolution (R ~ 50.000) optical spectra of the O-type star HD 152246 (O9 IV according to the most recent classification), complemented by a limited number of earlier published radial velocities, led to the finding that the object is a hierarchical triple system, where a close inner pair (Ba-Bb) with a slightly eccentric orbit (e = 0.11) and a period of 6.0049 days revolves in a 470-day highly eccentric orbit (e = 0.865) with another massive and brighter component A. The mass ratio of the inner system must be low since we were unable to find any traces of the secondary spectrum. The mass ratio A/(Ba+Bb) is 0.89. The outer system has recently been resolved using long-baseline interferometry on three occasions. The interferometry confirms the spectroscopic results and specifies elements of the system. Our orbital solutions, including the combined radial-velocity and interferometric solution indicate an orbital inclination of the outer orbit of 112{\deg} and stellar masses of 20.4 and 22.8 solar masses. We also disentangled the spectra of components A and Ba and compare them to synthetic spectra from two independent programmes, TLUSTY and FASTWIND. In either case, the fit was not satisfactory and we postpone a better determination of the system properties for a future study, after obtaining observations during the periastron passage of the outer orbit (the nearest chance being March 2015). For the moment, we can only conclude that component A is an O9 IV star with v*sin(i) = 210 +\- 10 km/s and effective temperature of 33000 +\- 500 K, while component Ba is an O9 V object with v*sin(i) = 65 +/- 3 km/s and T_eff = 33600 +\- 600 K.Comment: 9 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Heterogeneous Dynamics of Coarsening Systems

    Get PDF
    We show by means of experiments, theory and simulations, that the slow dynamics of coarsening systems displays dynamic heterogeneity similar to that observed in glass-forming systems. We measure dynamic heterogeneity via novel multi-point functions which quantify the emergence of dynamic, as opposed to static, correlations of fluctuations. Experiments are performed on a coarsening foam using Time Resolved Correlation, a recently introduced light scattering method. Theoretically we study the Ising model, and present exact results in one dimension, and numerical results in two dimensions. For all systems the same dynamic scaling of fluctuations with domain size is observed.Comment: Minor changes; to be published in Phys. Rev. Let

    Gamma–ray spectroscopy with single–carrier collection in high–resistivity semiconductors

    Get PDF
    With the standard plane–parallel configuration of semiconductor detectors, good γ–ray spectra can only be obtained when both electrons and holes are completely collected. We show by calculations (and experiments) that with contacts of hemispherical configuration one can obtain γ–ray spectra of adequate resolution and with signal heights of nearly full amplitude even when only one type of carrier is collected. Experiments with CdTe detectors for which the µτ product for electrons is about 10^(3) times that of the holes confirm these calculations. The adoption of hemispherical contacts thus widens the range of high–resistivity semiconductors potentially acceptable for γ–ray detection at room temperature

    Stability of 3D Cubic Fixed Point in Two-Coupling-Constant \phi^4-Theory

    Full text link
    For an anisotropic euclidean ϕ4\phi^4-theory with two interactions [u (\sum_{i=1^M {\phi}_i^2)^2+v \sum_{i=1}^M \phi_i^4] the β\beta-functions are calculated from five-loop perturbation expansions in d=4εd=4-\varepsilon dimensions, using the knowledge of the large-order behavior and Borel transformations. For ε=1\varepsilon=1, an infrared stable cubic fixed point for M3M \geq 3 is found, implying that the critical exponents in the magnetic phase transition of real crystals are of the cubic universality class. There were previous indications of the stability based either on lower-loop expansions or on less reliable Pad\'{e approximations, but only the evidence presented in this work seems to be sufficently convincing to draw this conclusion.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re250/preprint.htm

    Evidence for a Galactic gamma ray halo

    Get PDF
    We present quantitative statistical evidence for a γ\gamma-ray emission halo surrounding the Galaxy. Maps of the emission are derived. EGRET data were analyzed in a wavelet-based non-parametric hypothesis testing framework, using a model of expected diffuse (Galactic + isotropic) emission as a null hypothesis. The results show a statistically significant large scale halo surrounding the center of the Milky Way as seen from Earth. The halo flux at high latitudes is somewhat smaller than the isotropic gamma-ray flux at the same energy, though of the same order (O(10^(-7)--10^(-6)) ph/cm^2/s/sr above 1 GeV).Comment: Final version accepted for publication in New Astronomy. Some additional results/discussion included, along with entirely revised figures. 19 pages, 15 figures, AASTeX. Better quality figs (PS and JPEG) are available at http://tigre.ucr.edu/halo/paper.htm
    corecore