37,850 research outputs found
Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies
Experimental techniques are developed to determine the applicability of a particular luminescing center
for use in a luminescent solar concentrator (LSC). The relevant steady-state characteristics of eighteen
common organic laser dyes are given. The relative spectral homogeneity of such dyes are shown to depend upon the surrounding material using narrowband laser excitation. We developed three independent techniques for measuring self-absorption rates; these are time-resolved emission, steady-state polarization anisotropy, and spectral convolution. Preliminary dye degradation and prototype efficiency measurements are included. Finally, we give simple relationships relating the efficiency and gain of an LSC to key spectroscopic parameters of its constituents
The Flow of a Viscous Compressible Fluid Through a Very Narrow Gap
The effect of compressibility on the pressure distribution
in the narrow gap between a rotating cylinder and a plane in a viscous fluid was studied by Taylor and Saffman [1] during an investigation of the centripetal pump effect discovered by Reiner [2]
Structure formation from non-Gaussian initial conditions: multivariate biasing, statistics, and comparison with N-body simulations
We study structure formation in the presence of primordial non-Gaussianity of
the local type with parameters f_NL and g_NL. We show that the distribution of
dark-matter halos is naturally described by a multivariate bias scheme where
the halo overdensity depends not only on the underlying matter density
fluctuation delta, but also on the Gaussian part of the primordial
gravitational potential phi. This corresponds to a non-local bias scheme in
terms of delta only. We derive the coefficients of the bias expansion as a
function of the halo mass by applying the peak-background split to common
parametrizations for the halo mass function in the non-Gaussian scenario. We
then compute the halo power spectrum and halo-matter cross spectrum in the
framework of Eulerian perturbation theory up to third order. Comparing our
results against N-body simulations, we find that our model accurately describes
the numerical data for wavenumbers k < 0.1-0.3 h/Mpc depending on redshift and
halo mass. In our multivariate approach, perturbations in the halo counts trace
phi on large scales and this explains why the halo and matter power spectra
show different asymptotic trends for k -> 0. This strongly scale-dependent bias
originates from terms at leading order in our expansion. This is different from
what happens using the standard univariate local bias where the scale-dependent
terms come from badly behaved higher-order corrections. On the other hand, our
biasing scheme reduces to the usual local bias on smaller scales where |phi| is
typically much smaller than the density perturbations. We finally discuss the
halo bispectrum in the context of multivariate biasing and show that, due to
its strong scale and shape dependence, it is a powerful tool for the detection
of primordial non-Gaussianity from future galaxy surveys.Comment: 26 pages, 16 figures. Minor modifications, version accepted by Phys.
Rev.
Parity effect and single-electron injection for Josephson-junction chains deep in the insulating state
We have made a systematic investigation of charge transport in 1D chains of
Josephson junctions where the characteristic Josephson energy is much less than
the single-island Cooper-pair charging energy, . Such
chains are deep in the insulating state, where superconducting phase coherence
across the chain is absent, and a voltage threshold for conduction is observed
at the lowest temperatures. We find that Cooper-pair tunneling in such chains
is completely suppressed. Instead, charge transport is dominated by tunneling
of single electrons, which is very sensitive to the presence of BCS
quasiparticles on the superconducting islands of the chain. Consequently we
observe a strong parity effect, where the threshold voltage vanishes sharply at
a characteristic parity temperature , which is significantly lower than
the the critical temperature, . A measurable and thermally-activated
zero-bias conductance appears above , with an activation energy equal to
the superconducting gap, confirming the role of thermally-excited
quasiparticles. Conduction below and above the voltage threshold occurs
via injection of single electrons/holes into the Cooper-pair insulator, forming
a non-equilibrium steady state with a significantly enhanced effective
temperature. Our results explicitly show that single-electron transport
dominates deep in the insulating state of Josephson-junction arrays. This
conduction process has mostly been ignored in previous studies of both
superconducting junction arrays and granular superconducting films below the
superconductor-insulator quantum phase transition.Comment: 8 pages, 6 figure
Plagiochila rutilans (Hepaticae): A poorly known species from tropical America
The neotropical liverwort, Plagiochila rutilans Lindenb., is conspecific with P. remotifolia Hampe and Gottsche, P. farlowii Steph., P. harrisana Steph, and P. organensis Herzog. Plagiochila standleyi Carl is reduced to a variety of P. rutilans. Plagiochila gymnocalycina (Lehm. and Lindenb.) Mont. and P. portoricensis Hampe and Gottsche (= P. simplex (Sw.) Lindenb.) are excluded from the synonymy of P. rutilans. Plagiochila rutilans var. liebmanniana Gottsche is a synonym of P. crispabilis Lindenb.; P. rutilans var. laxa Lindenb. and var. angustifolia Herzog are conspecific with P. gymnocalycina. Sporophytes of P. rutilans are described for the first time. Fresh material of P. rutilans exhibits a distinct odor of peppermint caused by the presence of several menthane monoterpenoids, principally pulegone. NMR (nuclear magnetic resonance) fingerprints and GC-MS data indicate that the lipophilic secondary metabolite profiles are distinct for the two varieties accepted in this study
Dual-probe decoherence microscopy: Probing pockets of coherence in a decohering environment
We study the use of a pair of qubits as a decoherence probe of a non-trivial
environment. This dual-probe configuration is modelled by three
two-level-systems which are coupled in a chain in which the middle system
represents an environmental two-level-system (TLS). This TLS resides within the
environment of the qubits and therefore its coupling to perturbing fluctuations
(i.e. its decoherence) is assumed much stronger than the decoherence acting on
the probe qubits. We study the evolution of such a tripartite system including
the appearance of a decoherence-free state (dark state) and non-Markovian
behaviour. We find that all parameters of this TLS can be obtained from
measurements of one of the probe qubits. Furthermore we show the advantages of
two qubits in probing environments and the new dynamics imposed by a TLS which
couples to two qubits at once.Comment: 29 pages, 10 figure
Beyond capitalism and liberal democracy: on the relevance of GDH Cole’s sociological critique and alternative
This article argues for a return to the social thought of the often ignored early 20th-century English thinker GDH Cole. The authors contend that Cole combined a sociological critique of capitalism and liberal democracy with a well-developed alternative in his work on guild socialism bearing particular relevance to advanced capitalist societies. Both of these, with their focus on the limitations on ‘free communal service’ in associations and the inability of capitalism to yield emancipation in either production or consumption, are relevant to social theorists looking to understand, critique and contribute to the subversion of neoliberalism. Therefore, the authors suggest that Cole’s associational sociology, and the invitation it provides to think of formations beyond capitalism and liberal democracy, is a timely and valuable resource which should be returned to
- …