347 research outputs found

    Generalized Gravi-Electromagnetism

    Full text link
    A self consistant and manifestly covariant theory for the dynamics of four charges (masses) (namely electric, magnetic, gravitational, Heavisidian) has been developed in simple, compact and consistent manner. Starting with an invariant Lagrangian density and its quaternionic representation, we have obtained the consistent field equation for the dynamics of four charges. It has been shown that the present reformulation reproduces the dynamics of individual charges (masses) in the absence of other charge (masses) as well as the generalized theory of dyons (gravito - dyons) in the absence gravito - dyons (dyons). key words: dyons, gravito - dyons, quaternion PACS NO: 14.80H

    Viscoelastic Phase Separation in Shear Flow

    Full text link
    We numerically investigate viscoelastic phase separation in polymer solutions under shear using a time-dependent Ginzburg-Landau model. The gross variables in our model are the polymer volume fraction and a conformation tensor. The latter represents chain deformations and relaxes slowly on the rheological time giving rise to a large viscoelastic stress. The polymer and the solvent obey two-fluid dynamics in which the viscoelastic stress acts asymmetrically on the polymer and, as a result, the stress and the diffusion are dynamically coupled. Below the coexistence curve, interfaces appear with increasing the quench depth and the solvent regions act as a lubricant. In these cases the composition heterogeneity causes more enhanced viscoelastic heterogeneity and the macroscopic stress is decreased at fixed applied shear rate. We find steady two-phase states composed of the polymer-rich and solvent-rich regions, where the characteristic domain size is inversely proportional to the average shear stress for various shear rates. The deviatoric stress components exhibit large temporal fluctuations. The normal stress difference can take negative values transiently at weak shear.Comment: 16pages, 16figures, to be published in Phys.Rev.

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja

    Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in acetaminophen-induced liver damage

    Get PDF
    Acetaminophen (N-acetyl-para-aminophenol (APAP), paracetamol) is a commonly used analgesic and antipyretic agent. Although considered safe at therapeutic doses, accidental or intentional overdose causes acute liver failure characterized by centrilobular hepatic necrosis with high morbidity and mortality. Although many molecular aspects of APAP-induced cell death have been described, no conclusive mechanism has been proposed. We recently identified TNF-related apoptosis-inducing ligand (TRAIL) and c-Jun kinase (JNK)-dependent activation of the pro-apoptotic Bcl-2 homolog Bim as an important apoptosis amplification pathway in hepatocytes. In this study, we, thus, investigated the role of TRAIL, c-JNK and Bim in APAP-induced liver damage. Our results demonstrate that TRAIL strongly synergizes with APAP in inducing cell death in hepatocyte-like cells lines and primary hepatocyte. Furthermore, we found that APAP strongly induces the expression of Bim in a c-JNK-dependent manner. Consequently, TRAIL- or Bim-deficient mice were substantially protected from APAP-induced liver damage. This study identifies the TRAIL-JNK-Bim axis as a novel target in the treatment of APAP-induced liver damage and substantiates its general role in hepatocyte death

    Soybean products and reduction of breast cancer risk: a case–control study in Japan

    Get PDF
    Components of the Japanese diet, which might contribute to the relatively low breast cancer incidence rates in Japan, have not been clarified in detail. Since soybean products are widely consumed in Japan, a case–control study taking account of the menopausal status was conducted using data from the hospital-based epidemiologic research program at Aichi Cancer Center (HERPACC). In total, 167 breast cancer cases were included and 854 women confirmed as free of cancer were recruited as the control group. Odds ratios (OR) and 95% confidence intervals (95% CI) were determined by multiple logistic regression analysis. There were reductions in risk of breast cancer associated with high intake of soybean products among premenopausal women. Compared with women in the lowest tertile, the adjusted ORs for top tertile intake of tofu (soybean curd) was 0.49 (95% CI, 0.25–0.95). A significant decrease in premenopausal breast cancer risk was also observed for increasing consumption of isoflavones (OR=0.44; 95% CI, 0.22–0.89 for highest vs lowest tertile; P for trend=0.02). The present study found a statistically inverse association between tofu or isoflavone intake and risk of breast cancer in Japanese premenopausal women, while no statistically significant association was evident with the risk among postmenopausal women

    X-ray absorption spectroscopy systematics at the tungsten L-edge

    Get PDF
    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W<sup>0</sup>(PMe<sub>3</sub>)<sub>6</sub>], [W<sup>II</sup>Cl<sub>2</sub>(PMePh<sub>2</sub>)<sub>4</sub>], [W<sup>III</sup>Cl<sub>2</sub>(dppe)<sub>2</sub>][PF<sub>6</sub>] (dppe = 1,2-bis(diphenylphosphino)ethane), [W<sup>IV</sup>Cl<sub>4</sub>(PMePh<sub>2</sub>)<sub>2</sub>], [W<sup>V</sup>(NPh)Cl<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>], and [W<sup>VI</sup>Cl<sub>6</sub>] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L<sub>3,2</sub>-edges and the L<sub>1</sub> rising-edge energy with metal Z<sub>eff</sub>, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>] and [W<sup>IV</sup>(mdt)<sub>2</sub>(CN)<sub>2</sub>]<sup>2–</sup> (mdt<sup>2–</sup> = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W<sup>IV</sup> species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z<sub>eff</sub> in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z<sub>eff</sub> or, as in the case of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>], add other subtlety by modulating the redox level of other ligands in the coordination sphere

    The Inflammatory Response to Double Stranded DNA in Endothelial Cells Is Mediated by NFκB and TNFα

    Get PDF
    Endothelial cells represent an important barrier between the intravascular compartment and extravascular tissues, and therefore serve as key sensors, communicators, and amplifiers of danger signals in innate immunity and inflammation. Double stranded DNA (dsDNA) released from damaged host cells during injury or introduced by pathogens during infection, has emerged as a potent danger signal. While the dsDNA-mediated immune response has been extensively studied in immune cells, little is known about the direct and indirect effects of dsDNA on the vascular endothelium. In this study we show that direct dsDNA stimulation of endothelial cells induces a potent proinflammatory response as demonstrated by increased expression of ICAM1, E-selectin and VCAM1, and enhanced leukocyte adhesion. This response was dependent on the stress kinases JNK and p38 MAPK, required the activation of proinflammatory transcription factors NFκB and IRF3, and triggered the robust secretion of TNFα for sustained secondary activation of the endothelium. DNA-induced TNFα secretion proved to be essential in vivo, as mice deficient in the TNF receptor were unable to mount an acute inflammatory response to dsDNA. Our findings suggest that the endothelium plays an active role in mediating dsDNA-induced inflammatory responses, and implicate its importance in establishing an acute inflammatory response to sterile injury or systemic infection, where host or pathogen derived dsDNA may serve as a danger signal.United States. Dept. of Defense (CDMRP Predoctoral Training Award)National Institutes of Health (U.S.) (NIH BioMEMS Resource Center Grant P41 EB-002503)National Institutes of Health (U.S.) (NIH Grant RO1AI063795)Shriners Hospital for Childre
    • …
    corecore