73 research outputs found
Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer
Deep saline aquifers are promising geological reservoirs for CO2
sequestration if they do not leak. The absence of leakage is provided by the
caprock integrity. However, CO2 injection operations may change the
geomechanical stresses and cause fracturing of the caprock. We present a model
for the propagation of a fracture in the caprock driven by the outflow of fluid
from a low-permeability aquifer. We show that to describe the fracture
propagation, it is necessary to solve the pressure diffusion problem in the
aquifer. We solve the problem numerically for the two-dimensional domain and
show that, after a relatively short time, the solution is close to that of
one-dimensional problem, which can be solved analytically. We use the relations
derived in the hydraulic fracture literature to relate the the width of the
fracture to its length and the flux into it, which allows us to obtain an
analytical expression for the fracture length as a function of time. Using
these results we predict the propagation of a hypothetical fracture at the In
Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also
show that the hydrostatic and geostatic effects cause the increase of the
driving force for the fracture propagation and, therefore, our solution serves
as an estimate from below. Numerical estimates show that if a fracture appears,
it is likely that it will become a pathway for CO2 leakage.Comment: 21 page
Not seeing the forest for the trees: Generalised linear model out-performs random forest in species distribution modelling for Southeast Asian felids
Species Distribution Models (SDMs) are a powerful tool to derive habitat suitability predictions relating species occurrence data with habitat features. Two of the most frequently applied algorithms to model species-habitat relationships are Generalised Linear Models (GLM) and Random Forest (RF). The former is a parametric regression model providing functional models with direct interpretability. The latter is a machine learning non-parametric algorithm, more tolerant than other approaches in its assumptions, which has often been shown to outperform parametric algorithms. Other approaches have been developed to produce robust SDMs, like training data bootstrapping and spatial scale optimisation. Using felid presence-absence data from three study regions in Southeast Asia (mainland, Borneo and Sumatra), we tested the performances of SDMs by implementing four modelling frameworks: GLM and RF with bootstrapped and non-bootstrapped training data. With Mantel and ANOVA tests we explored how the four combinations of algorithms and bootstrapping influenced SDMs and their predictive performances. Additionally, we tested how scale-optimisation responded to species' size, taxonomic associations (species and genus), study area and algorithm. We found that choice of algorithm had strong effect in determining the differences between SDMs' spatial predictions, while bootstrapping had no effect. Additionally, algorithm followed by study area and species, were the main factors driving differences in the spatial scales identified. SDMs trained with GLM showed higher predictive performance, however, ANOVA tests revealed that algorithm had significant effect only in explaining the variance observed in sensitivity and specificity and, when interacting with bootstrapping, in Percent Correctly Classified (PCC). Bootstrapping significantly explained the variance in specificity, PCC and True Skills Statistics (TSS). Our results suggest that there are systematic differences in the scales identified and in the predictions produced by GLM vs. RF, but that neither approach was consistently better than the other. The divergent predictions and inconsistent predictive abilities suggest that analysts should not assume machine learning is inherently superior and should test multiple methods. Our results have strong implications for SDM development, revealing the inconsistencies introduced by the choice of algorithm on scale optimisation, with GLM selecting broader scales than RF
Dynamics of amino acid metabolism of primary human liver cells in 3D bioreactors
The kinetics of 18 amino acids, ammonia (NH3) and urea (UREA) in 18 liver cell bioreactor runs were analyzed and simulated by a two-compartment model consisting of a system of 42 differential equations. The model parameters, most of them representing enzymatic activities, were identified and their values discussed with respect to the different liver cell bioreactor performance levels. The nitrogen balance based model was used as a tool to quantify the variability of runs and to describe different kinetic patterns of the amino acid metabolism, in particular with respect to glutamate (GLU) and aspartate (ASP)
Blood coagulation and beyond:Position paper from the Fourth Maastricht Consensus Conference on Thrombosis
The 4th Maastricht Consensus Conference on Thrombosis (MCCT), included the following themes: Theme 1: The coagulome as a critical driver of cardiovascular disease Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infections associated-coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies This theme included state of the art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: how to utilize ex vivo models? Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularised organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation (ECMO) associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management Plenary presentations addressed controversial areas, ie thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies and clinically tested factor XI(a) inhibitors,both possibly with reduced bleeding risk. Finally, Covid-19 associated coagulopathy is revisited.</p
Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites
Blood coagulation and beyond: position paper from the fourth Maastricht consensus conference on thrombosis
The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ- specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/ or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of- the- art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i. e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID- 19-associated coagulopathy is revisited.Nephrolog
Blood coagulation and beyond: Position paper from the Fourth Maastricht Consensus Conference on Thrombosis
The 4th Maastricht Consensus Conference on Thrombosis (MCCT), included the following themes: Theme 1: The coagulome as a critical driver of cardiovascular disease Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infections associated-coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies This theme included state of the art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: how to utilize ex vivo models? Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularised organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation (ECMO) associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management Plenary presentations addressed controversial areas, ie thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies and clinically tested factor XI(a) inhibitors,both possibly with reduced bleeding risk. Finally, Covid-19 associated coagulopathy is revisited
The Promise and Practice of Learner-Generated Drawing: Literature Review and Synthesis
- …
