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A B S T R A C T   

Species Distribution Models (SDMs) are a powerful tool to derive habitat suitability predictions relating species 
occurrence data with habitat features. Two of the most frequently applied algorithms to model species-habitat 
relationships are Generalised Linear Models (GLM) and Random Forest (RF). The former is a parametric 
regression model providing functional models with direct interpretability. The latter is a machine learning non- 
parametric algorithm, more tolerant than other approaches in its assumptions, which has often been shown to 
outperform parametric algorithms. Other approaches have been developed to produce robust SDMs, like training 
data bootstrapping and spatial scale optimisation. Using felid presence-absence data from three study regions in 
Southeast Asia (mainland, Borneo and Sumatra), we tested the performances of SDMs by implementing four 
modelling frameworks: GLM and RF with bootstrapped and non-bootstrapped training data. With Mantel and 
ANOVA tests we explored how the four combinations of algorithms and bootstrapping influenced SDMs and their 
predictive performances. Additionally, we tested how scale-optimisation responded to species' size, taxonomic 
associations (species and genus), study area and algorithm. We found that choice of algorithm had strong effect 
in determining the differences between SDMs' spatial predictions, while bootstrapping had no effect. Addition
ally, algorithm followed by study area and species, were the main factors driving differences in the spatial scales 
identified. SDMs trained with GLM showed higher predictive performance, however, ANOVA tests revealed that 
algorithm had significant effect only in explaining the variance observed in sensitivity and specificity and, when 
interacting with bootstrapping, in Percent Correctly Classified (PCC). Bootstrapping significantly explained the 
variance in specificity, PCC and True Skills Statistics (TSS). Our results suggest that there are systematic dif
ferences in the scales identified and in the predictions produced by GLM vs. RF, but that neither approach was 
consistently better than the other. The divergent predictions and inconsistent predictive abilities suggest that 
analysts should not assume machine learning is inherently superior and should test multiple methods. Our results 
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have strong implications for SDM development, revealing the inconsistencies introduced by the choice of al
gorithm on scale optimisation, with GLM selecting broader scales than RF.   

1. Introduction 

Species distribution models (SDMs) are a powerful tool to derive 
spatially-explicit predictions of habitat suitability, by statistically 
relating species occurrence data at known locations with environmental 
features of those locations (Elith and Leathwick, 2009; Guisan and 
Thuiller, 2005). Several statistical approaches are available to produce 
SDMs (Guisan et al., 2017; Valavi et al., 2022), with regression methods 
(Guisan et al., 2002) in particular applied in the earlier stages of the 
SDMs' development, and machine learning methods receiving more 
attention in recent years (e.g., Evans and Cushman (2009); Cushman 
et al. (2017); Stupariu et al. (2021)). 

Among regression models, generalised linear models (GLM) are ex
tensions of linear model allowing non-linearity and non-constant vari
ance of the data (Guisan et al., 2002; Hastie and Tibshirani, 1990). 
Consequently, GLM can deal with different families of data, making 
them an appropriate tool for analysing species-habitat relationships, 
which rarely are represented by normal distributions (Austin, 1987). 
GLM have long been the predominant algorithm used in SDMs (Elith and 
Leathwick, 2009; Guisan and Thuiller, 2005; Guisan and Zimmermann, 
2000; McGarigal et al., 2016). 

Among machine learning techniques, random forest (RF; Breiman 
(2001)) is the most commonly used algorithm (Stupariu et al., 2021). RF 
are Classification and Regression Tree (CART) based ensemble ap
proaches, which overcome limitations of CARTs such as model over- 
fitting. Additionally, RF can handle large numbers of predictor vari
ables without being affected by multicollinearity, and can readily 
accommodate nonlinear relationships between predictor and response 
variables (Breiman, 2001; Evans and Cushman, 2009; Kumar et al., 
2021). Furthermore, by permutation of variables, RF provides accessible 
measures of variable importance (Cutler et al., 2007; Evans and Cush
man, 2009). 

The applications of GLM and other parametric models are con
strained by often neglected or violated assumptions, such as data inde
pendence, linearity and variable interaction. Therefore, non-parametric 
algorithms, like RF, in many cases show better performance in com
parison to parametric methods (Cushman et al., 2017; Cushman and 
Wasserman, 2018; Kumar et al., 2021; Valavi et al., 2022). However, 
there are applications where RF perform poorly, often because non- 
parametric algorithms have little control over the shape of the fitted 
function (Roberts et al., 2017). Additionally, RF's performances are 
sometimes weak when using presence-absence data with an imbalance 
in favour of absences (e.g., Evans and Cushman (2009); Freeman et al. 
(2012)). Therefore, comparing the performances of GLM and RF is an 
important and contemporary issue to assess for developing reliable 
SDMs. 

To produce accurate SDMs, not just the effects of different algorithms 
should be investigated, but also the effects of resampling techniques on 
model's training data (Efron, 1982; Freedman, 1981). Specifically, 
bootstrapping (i.e., random subsampling with replacement) the training 
data has been shown to increase models' precision by providing a 
combination of models, which reduces stochastic errors in estimation (e. 
g., Vaughan and Ormerod (2005); Hefley et al. (2014); Xu and Goodacre 
(2018)). 

Additionally, species-habitat relationships occur at multiple spatial 
scales (Levin, 1992; Wiens, 1989). Therefore, scale optimisation has 
recently been an area of rapid development (Chiaverini et al., 2021; 
Vergara et al., 2016; Wan et al., 2019). Given that scale optimization is a 
critical step in the framework to produce reliable SDMs (McGarigal 
et al., 2016), it is important to understand how modelling algorithm and 
bootstrapping affect multiscale model optimisation. 

Here, using presence-absence data of felid species sampled in three 
study regions in Southeast Asia (mainland, Borneo and Sumatra), we 
investigated nine hypotheses related to the performances and pre
dictions of SDMs, and how these are affected by scale optimisation, 
choice of algorithm and application of data resampling. Specifically, we 
hypothesised that: (1) RF would outperform GLM in terms of their 
predictive performances; (2) predictive performances of the models 
trained with bootstrapped data would outperform non-bootstrapped 
models; (3) models trained with the same algorithm would be more 
correlated; (4) bootstrapping would have relatively little effect on cor
relation of the SDMs; (5) species that are more similar in size would have 
more similarities in the representative spatial scales at which predictor 
variables were selected; (6) models for the same species would have 
more similar scales than models for different species; (7) models for the 
same genus would have more similar scales than models for different 
genera; (8) models for species from the same study area would have 
more similar scales than species from different study areas; (9) models 
trained with the same algorithm would have more similar scales than 
models trained with a different algorithm. 

2. Materials and methods 

2.1. Data collection 

Camera trap surveys were carried out in Southeast Asia between 
2007 and 2016, covering the range of the two clouded leopard species (i. 
e., mainland clouded leopard (Neofelis nebulosa) in mainland Southeast 
Asia and Sunda clouded leopard (Neofelis diardi) in Borneo and Suma
tra), which represented the original focus of our surveys. Sampling grids 
occurred mainly in protected areas, covering a wide altitudinal gradient 
and different environments. Grids consisted of approximately 80 camera 
stations placed 1.0–2.0 km from each other, with two cameras per sta
tion at ~40 cm above the ground, and deployed along forest trails and 
disused logging roads to maximise felids' detection success (Macdonald 
et al., 2018; Macdonald et al., 2019). Additionally, we incorporated data 
from camera trap studies conducted by Ash et al. (2021). 

Even though the surveys were designed for sampling clouded leop
ards, we also collected data for Asiatic golden cat (Catopuma temminckii), 
marbled cat (Pardofelis marmorata) and leopard cat (Prionailurus benga
lensis) in mainland, Borneo bay cat (Catopuma badia), marbled cat and 
Sunda leopard cat (Prionailurus javanensis) in Borneo, and Asiatic golden 
cat, marbled cat and Sunda leopard cat in Sumatra. To minimise over
estimation bias, we excluded records of the same species at the same 
camera trap stations within 1 h, except when animals were individually 
recognisable and when sex and/or age classes were unambiguous. 

2.2. Habitat covariates 

We chose two preliminary sets of covariates to model habitat suit
ability for felids in the mainland and in the offshore extents of the study 
area, reflecting different habitat composition of the regions. Covariates 
were selected based on previous knowledge of felid ecological re
quirements in Southeast Asia (Hearn et al., 2018; Macdonald et al., 
2018; Macdonald et al., 2019), and included environmental, anthropo
genic, topographic and climatic covariates (Tables S1-S3). 

To investigate the scales at which sampled felids select habitat fea
tures, we assessed each covariate at eight spatial scales, by using circular 
buffers of varying radii, centred on each camera trap location. For 
mainland, we investigated representative spatial scales by using circular 
buffers of 250 m, 500 m, 1000 m, 2000 m, 4000 m, 8000 m, 16,000 m 
and 32,000 m. For Borneo and Sumatra we used buffers of 250 m, 500 m, 
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1000 m, 2000 m, 4000 m, 6000 m, 8000 m and 10,000 m (Chiaverini 
et al., 2022; Macdonald et al., 2020). 

At each of the aforementioned scales, we calculated biologically 
informative metrics by using FRAGSTATS (McGarigal et al., 2012) for 
discrete raster layers and ArcMap v10.6.1 (ESRI, 2018) for continuous 
raster layers: in FRAGSTATS, we implemented percentage of landscape 
(PLAND) metric, while in ArcMap we calculated focal mean (FM). Both 
the functions average the pixel values of the covariates' raw raster layers 
to obtain a smoothened version of the original layer. Additionally, 
PLAND function calculates the percentage of the focal covariate within 
the circular buffer, and this is why it has been preferred for discrete 
layers. Finally, we removed poorly sampled covariates occurring at 
<10% of camera trap stations. 

2.3. Modelling framework 

2.3.1. Generalised linear model – scale optimisation and covariates 
selection 

To investigate the most representative spatial scales, we performed 
univariate generalised linear model (GLM), independently at each scale 
for each covariate, using the presence-absence data independently for 
each felid as the response variable. We subset the dataset by randomly 
selecting 80% of the camera traps to train the univariate GLM, leaving 
the remaining 20% for model validation. For each covariate, we selected 
the scale whose univariate GLM showed the lowest Akaike Information 
Criterion (AIC). We then checked the best-scaled covariates for multi
collinearity by calculating Pearson's correlation index between all 
covariates pairs and, when two covariates were highly correlated (i.e., | 
r| ≥ 0.7), by removing the one whose univariate GLM showed the lower 
adjusted-R2 (Guisan and Zimmermann, 2000). 

2.3.2. Generalised linear model – model training 
We trained GLM independently for each felid species, by applying 

two different approaches. For the first approach (hereafter non-boot
strapped GLM), we trained the models by using the same dataset used to 
evaluate the best scales, composed of the 80% of the camera traps, and 
we produced species distribution probability surfaces for each sampled 
felid. 

For the second approach (hereafter bootstrapped GLM) we sub
sampled the entire camera trap dataset by randomly selecting 20% of the 
presence and of the absence locations, trained a GLM and produced a 
species distribution probability surface. We reiterated this process 100 
times with replacement, and produced the final species distribution 
probability surfaces by averaging the 100 probability surfaces, inde
pendently for each felid. 

2.3.3. Generalised linear model – model validation 
We evaluated the performances of the non-bootstrapped GLM by 

calculating the Area Under the ROC Curve (AUC), Percent Correctly 
Classified (PCC), sensitivity, specificity and True Skill Statistic (TSS) 
using the 20% camera traps retained from the training dataset. 

To evaluate the bootstrapped GLM, for each of the 100 iterations, we 
calculated AUC, PCC, sensitivity, specificity and TSS using the data 
retained from the model training, composed of 80% of the presence and 
of the absence locations. We obtained the final metrics by averaging the 
results of 100 validation iterations. We implemented this framework 
independently for each felid. Validation metrics were calculated in R 
v3.5.1 (R Core Team, 2018) using the package PresenceAbsence 
(Freeman and Moisen, 2007). 

2.4. Random forest – scale optimisation and covariates selection 

Independently for each felid, we investigated the most representative 
scale for each covariate by performing univariate Random Forest (RF), 
using the full camera traps dataset and the presence-absence data as 
response variable. For each covariate, we selected the scale whose 

univariate RF showed the lowest Out-Of-Bag (OOB) error. 

2.4.1. Random forest – model training 
Similar to the GLM approaches, for RF we used two different training 

data selection frameworks. For the first one (hereafter non-bootstrapped 
RF), we trained the RF by using the same training dataset used for the 
non-bootstrapped GLM, composed of randomly selected 80% of camera 
trap locations, and produced species distribution probability surfaces for 
each felid. 

For the second approach (hereafter bootstrapped RF), we subsampled 
the entire camera trap dataset by randomly selecting 20% of the pres
ence and of the absence locations. We then trained RF with the sub
sampled dataset and produced the species distribution probability 
surface. We reiterated this framework 100 times, replacing each time the 
data used to train the models, and produced 100 different probability 
surfaces. We then obtained the final species distribution probability 
surfaces by averaging the 100 probability surfaces, independently for 
each felid. Each individual RF was produced by bagging the training 
data, a procedure automatically implemented in the algorithm to reduce 
the variance that might otherwise characterise decision trees. Therefore, 
by bootstrapping also the training data of each RF, we implemented a 
two-stage bagging procedure. 

2.4.2. Random forest – model validation 
We evaluated the non-bootstrapped RF by calculating AUC, PCC, 

sensitivity, specificity and TSS using the 20% camera traps retained from 
the RF training. 

To evaluate the bootstrapped RF, we used the retained dataset from 
the RF training, composed of the 80% of presence and absence locations, 
to calculate AUC, PCC, sensitivity, specificity and TSS for each itera
tions, independently for each species, using the package PresenceAbsence 
in R v3.5.1. To obtain the final metrics, we averaged the metric results of 
the 100 iterations. 

2.5. Effects of algorithm and bootstrapping on predictive performances 

To evaluate whether the algorithm and the bootstrapping affected 
the predictive performances of the models, we performed ANOVA tests. 
We performed the tests independently for each performance metric we 
calculated, and tested the effect of algorithm, bootstrapping and com
bination of algorithm and bootstrapping. 

2.6. Effects of algorithm and bootstrapping on models similarity 

To investigate the effects of algorithm and bootstrapping on the 
similarities between species distribution surfaces, we performed Mantel 
tests in R v3.5.1 using the package ecodist (Goslee and Urban, 2007). We 
first calculated Pearson's correlation indexes between the four models, 
for each species, for each study area, resulting in a total of twelve in
dependent matrices (Tables S4-S15). Then, we calculated Mantel tests 
independently between these matrices and two binary matrices (“model 
matrices” sensu Legendre and Legendre (1998)) representing whether 
the models have been trained with GLM or RF (Table S16), and whether 
they have been bootstrapped or non-bootstrapped (Table S17). Finally, 
we averaged the results of the Mantel tests for each species, indepen
dently for algorithm and bootstrapping, to investigate their overarching 
effect on the species distribution probability surfaces. 

2.7. Factors determining spatial scales selection 

To evaluate the effects of different factors on the selection of the 
representative spatial scales, we performed Mantel tests in R v3.5.1 
using the package ecodist. Specifically, we ran five simple Mantel tests 
between the difference in the ordinal scales among pairs of covariates 
across models and the difference in each of the factors we hypothesised 
to affect scale selection: body size (indexed to reflect the relative 
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differences between species), species, genus, study area and algorithm. 
Additionally, we ran eight partial Mantel tests separating the effects 

of the methodological factor (i.e., algorithm) and of the four ecological 
factors (i.e., body size, species, genus and study area). We ran four 
partial Mantel tests between the difference in ordinal scales and differ
ence in algorithm, partialling out the difference in each of the four 
ecological factors, sequentially. Then, we also ran four partial Mantel 
tests between the difference in ordinal scales and difference in each of 
the four ecological factors, partialling out the difference in algorithm. 

3. Results 

3.1. Data collection 

Camera trap grids were deployed in 15 sampling locations in seven 
countries in the mainland study area (Table S18) and in 22 sampling 
locations in the Sunda Islands (15 in Borneo and 7 in Sumatra; 
Table S19). This sampling effort yielded a total of 1384 camera trap 
stations in mainland and 1544 in the Sunda Islands (801 in Borneo and 
743 in Sumatra). We achieved a combined sampling effort of 115,389 
trap nights in the mainland (mean = 83.4 ± 2.6SE) and of 138,515 trap 
nights in the Sunda Islands (77,687 in Borneo (mean = 97.0 ± 2.1SE) 
and 60,828 in Sumatra (mean = 81.9 ± 0.7SE)). 

In the mainland we sampled clouded leopard at 235 camera trap 
stations, Asiatic golden cat at 148 stations, marbled cat at 116 stations 
and leopard cat at 345 stations (Table S20). In Borneo, we sampled 
Sunda clouded leopard at 154 camera trap stations, Borneo bay cat at 25 

stations, marbled cat at 85 stations and Sunda leopard cat at 202 stations 
(Table S21). In Sumatra, we sampled Sunda clouded leopard at 101 
camera trap stations, Asiatic golden cat at 102 stations, marbled cat at 
39 stations and Sunda leopard cat at 23 stations (Table S22). 

3.2. Effects of algorithm and bootstrapping on predictive performances 

Predictive performances were substantially different comparing the 
species distribution probability surfaces produced with the four 
modelling frameworks (see Model validation in Supplementary Infor
mation; Tables S23-S27). 

The ANOVA tests performed to assess whether the algorithm, the 
bootstrapping or their combination had significant effects on the models' 
predictive performances, revealed that there was a statistically signifi
cant difference in the PCC scores based on the bootstrapping (F(1, 44) =

9.72, p < 0.01) and a less strong difference based on the interaction of 
algorithm and bootstrapping (F(1, 44) = 3.56, p < 0.1; Fig. S1). We also 
found sensitivity to be significantly related to algorithm (F(1, 44) = 3.72, 
p < 0.1; Fig. S2), and specificity to be related to bootstrapping (F(1, 44) =

8.53, p < 0.01) and, more weakly, to algorithm (F(1, 44) = 3.30, p < 0.1; 
Fig. S3). We also found TSS to be related to bootstrapping (F(1, 44) =

3.30, p < 0.1; Fig. S4). We did not find any statistically significant dif
ference for AUC (Fig. S5). 

3.3. Effects of algorithm and bootstrapping on models similarity 

Using the final sets of scale-optimised, uncorrelated covariates, we 

Fig. 1. Examples of different probability surfaces for marbled cat (Pardofelis marmorata) in mainland Southeast Asia, produced with (a) non-bootstrapped GLM, (b) 
bootstrapped GLM, (c) non-bootstrapped RF and (d) bootstrapped RF. We masked out the regions that were ecologically highly divergent from the sampled ones by 
producing a Mahalanobis mask (see Mahalanobis mask in Supplementary Information). 
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produced species distribution probability surfaces for the sampled felids 
by using the four modelling approaches (Fig. 1 and Figs. S6-S53). 

The four models produced substantially different probability sur
faces, showing sometimes very low correlation between models for the 
same species (see Model predictions in Supplementary Information; 
Tables S4-S15). 

The Mantel tests, performed to evaluate whether there was a sig
nificant effect of algorithm and bootstrapping on the similarities 
observed between species distribution probability surfaces, showed a 
clear pattern in which there is strong effect of algorithm on the corre
lations in the output (mean Mantel = 0.84; Table 1). However, the 
Mantel tests showed also that there was no effect of bootstrapping on the 
correlations between probability surfaces (mean Mantel = − 0.40; 
Table 1). 

3.4. Factors determining spatial scale selection 

The scale optimisation revealed that the most representative scales 
for each covariate, for each felid, varied substantially based on the al
gorithm applied, with GLM selecting overall consistently and substan
tially broader scales than RF (see Scale optimisation and covariates 
selection in Supplementary Information; Tables S1-S3). Mantel r value is 
a good indicator of relative effect size (Cushman et al., 2013b) and, 
based on this criterion, difference in algorithm had the strongest rela
tionship with difference in ordinal scales among covariates across spe
cies models. The second highest relationship was for study area, which 
had approximately 70% of the effect size of difference in algorithm, 
based on magnitude of Mantel r. The third strongest relationship be
tween ordinal scales and predictive factors was with species, which 

showed approximately 20% of the effect size of difference in algorithm 
(Table 2). 

The partial Mantel tests were carried out to determine whether the 
methodological differences (i.e., algorithm) were independent of the 
ecological differences (i.e., species' size, species, genus and study area) 
in relation to correlation between difference in ordinal scales and dif
ference in predictive variables. The partial Mantel tests showed that all 
relationships identified in the single Mantel tests were independent of 
relationships with other factors. Indeed, in all cases the partial Mantel 
tests slightly increased the Mantel r values, showing that removing the 
co-varying effect of other factors strengthened the correlation between 
difference in ordinal scales and difference in predictive variables. The 
correlation between ordinal scales difference and algorithm difference 
was strongest, followed also in this case by study area, species, genus 
and species' size (Table 3). 

4. Discussion 

4.1. Similarity of prediction and model performance hypotheses 

Of the two hypotheses related to model similarities and correlations, 
our results supported one of them. Specifically, the Mantel tests sup
ported the hypothesis that there are strong differences between spatial 
predictions produced with GLM and RF, across levels of bootstrapping. 
Species distribution surfaces resulting from the application of these al
gorithms are used to prioritise areas for protection or to identify the 
areas richest in biodiversity (e.g., Kaszta et al. (2020); Penjor et al. 
(2021)), and differences in the model predictions based on algorithm 
applied, and not on the underlying ecological relationships, would add a 

Fig. 1. (continued). 
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high level of uncertainty to interpreting the results of species distribu
tion models. 

Given this large systematic difference between model prediction by 
GLM and RF, it is important to identify a priori which method was su
perior to avoid the uncertainty and ambiguity of conflicting predictions. 
A number of past studies have suggested that RF is generally more 
robust, accurate and reliable than GLM for species distribution model
ling (e.g., Cushman et al. (2017); Cushman and Wasserman (2018); 
Kumar et al. (2021)). Therefore, we hypothesised that RF would 
consistently out-perform GLM in terms of model performance and ac
curacy of predictions. However, our hypothesis was not supported. 
Nominally, GLM outperformed RF based on AUC in all three study areas 
for the majority of species. The only marginally significant differences 
due to the algorithm were observed in the scores of the sensitivity and 
specificity. However, the combined effect of algorithm and boot
strapping was also statistically significant in exampling variance in PCC 
scores. 

We found our results surprising given the rich literature supporting 
RF as a much stronger modelling algorithm than GLM. Cushman and 
Wasserman (2018) compared the species distribution models for 
American marten (Martes americana) in northern USA, by using GLM and 
RF, concluding that RF produced the most supported model. Similarly, 
Kumar et al. (2021), in their effort to develop of a new technique to 
model species-habitat relationships (i.e., the smoothing function), also 
compared GLM and RF, demonstrating that the latter outperformed the 
former. However, there are cases in which RF has been reported to 
perform poorly. Specifically, poor predictive performances for RF have 
often been reported when models are trained with unbalanced presence- 
absence data, characterised by several absences that outnumber 

presences (Evans and Cushman, 2009; Freeman et al., 2012). This is 
indeed the case of our data characterised, especially for some species, by 
high proportions of absences and, even though we corrected for imbal
ance data by implementing the RF class-balance modelling approach 
(Evans and Cushman, 2009), we believe that the effect of zero-inflation 
on RF should be further evaluated. Additionally, Valavi et al. (2021) 
reported that a critical factor that negatively affects the predictive per
formances of RF trained with presence-absence data is what they defined 
as “class overlap”, represented by presence and absence locations 
occurring in close geographic association in the same habitats. This 
circumstance is particularly frequent in our dataset, which was 
composed of camera traps that, when occurring within the same sam
pling regions, were deployed at 1.0–2.0 km from each other. Therefore, 
the unbalance between presences and absences, as well as the occur
rence of presence and absence locations within the same geographic 
contexts, were both factors that likely influenced negatively the pre
dictive performances of the RF, and future research is strongly recom
mended to better characterise the effects that the structure of datasets 
has on RF's predictive performances. Recently, Kumar et al. (2021) used 
a simulation approach to evaluate the effects of spatial sampling 
(random vs actual clustered camera traps), as well as the shape of the 
environmental manifold, nonlinearity, and interaction on GLM and RF 
modelling. That study found that RF consistently was accurate in 
describing the underlying species-environment relationship, even when 
data were clustered. Given that that study used the actual spatial dis
tribution of samples used in a subset of the data used in this study, we 
infer that clustered sampling is not the major driver of the poorer than 
expected performance of RF. 

Finally, even though we demonstrated that differences in the 

Fig. 1. (continued). 
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algorithms led to large and systematic differences in SDM predictions, 
the Mantel tests did not support our hypothesis that models trained with 
bootstrapped data were more similar to other bootstrapped models, 
across algorithms. Therefore, bootstrapping the training data of the 

models, regardless of the algorithm, did not lead to significant differ
ences from models trained with non-bootstrapped data. These results are 
corroborated by the weak support for our hypothesis that bootstrapping 
would produce SDMs with higher predicting power. Bootstrapping had 
only a slightly stronger effect on explaining the predictive performances, 
given that it had strong statistical power in explaining PCC and speci
ficity scores and, to a lesser extent, TSS. This conflicts with our 

Fig. 1. (continued). 

Table 1 
Results of the Mantel tests to evaluate the effects of algorithm and bootstrapping 
on the correlations between species distribution probability surfaces.  

Study 
areas 

Species Algorithm Mantel 
tests 

Bootstrapping Mantel 
tests 

Mainland Neofelis nebulosa 0.98 − 0.49  
Catopuma 
temminckii 

0.24 − 0.16  

Pardofelis 
marmorata 

0.93 − 0.47  

Prionailurus 
bengalensis 

0.94 − 0.46 

Borneo Neofelis diardi 0.99 − 0.46  
Catopuma badia 0.93 − 0.42  
Pardofelis 
marmorata 

0.71 − 0.23  

Prionailurus 
javanensis 

0.96 − 0.48 

Sumatra Neofelis diardi 0.64 − 0.21  
Catopuma 
temminckii 

0.90 − 0.57  

Pardofelis 
marmorata 

0.95 − 0.34  

Prionailurus 
javanensis 

0.96 − 0.48 

Mean  0.84 − 0.40  

Table 2 
Simple Mantel tests results for scales relationships.  

Covariate Mantel r p 

Algorithm 0.14 0.001 
Study area 0.10 0.001 
Species 0.03 0.001 
Genus 0.003 0.15 
Size − 0.0003 0.49  

Table 3 
Partial Mantel tests results for scales relationships.  

Covariate Partial Mantel r p 

Algorithm Study area 0.13590 0.001 
Algorithm Species 0.13521 0.001 
Algorithm Genus 0.13503 0.001 
Algorithm Size 0.13501 0.001 
Study area Algorithm 0.09804 0.001 
Species Algorithm 0.02928 0.001 
Genus Algorithm 0.00329 0.11 
Size Algorithm 0.00001 0.49  
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expectation that bootstrapping would improve the model's ability to 
correctly classify presence-absence data by reducing single models' 
stochastic errors. However, an interesting behaviour of bootstrapping 
that we partially observed here, and which has already been demon
strated by, for example, Osawa et al. (2011), is that it improved SDMs' 
ability to discern true positive rates (i.e., sensitivity) and true negative 
rates (i.e., specificity). Consequently, TSS, calculated as “sensitivity +
specificity – 1”, benefitted from bootstrapping, showing significant dif
ference from non-bootstrapped SDMs. Our results generally found that 
non-bootstrapped models had higher performance based on the majority 
of our performance measures than bootstrapped models for most species 
in all three study areas. This suggests that the large effort to conduct 
bootstrapped sampling to train SDMs may be misplaced and that 
generally bootstrapping does not improve model predictions. 

4.2. Scaling hypotheses 

The Mantel test analyses supported three of the five hypotheses 
related to spatial scales. First, contrary to predictions, our results sug
gested that there is no relationship between similarities in scales of 
relationship and body size based on species' weight. One would expect 
for a coherent guild, such as felids, that there would be strong and 
monotonic association between scales of habitat relationships and body 
size, with larger-bodied species generally related to habitat factors at 
broader scales. Large felids are expected to select habitat factors at broad 
scales, reflecting their mobility (Elliot et al., 2014) and home-range 
selection (Khosravi et al., 2019). It is not uncommon, however, to 
observe species selecting habitat factors at scales that are uncorrelated 
with their body sizes. Hearn et al. (2018), for example, highlighted that 
in Borneo, Sunda leopard cat, marbled cat and Sunda clouded leopard 
selected tree cover at increasing spatial scales, as one would expect 
based on their sizes, but that they selected elevation at spatial scales that 
would be unlikely based on their sizes, with Sunda clouded leopard and 
marbled cat selecting elevation at slightly >100 m, and the small Sunda 
leopard cat at almost 2 km. These examples suggest that simple ideas 
about the association between body sizes and scales of species-habitat 
relationships might be misplaced, and species-specific formal optimal 
scales optimisation has to be carried out to assess the representative 
spatial scales (McGarigal et al., 2016). 

Second, we found significant relationships between species and 
scales, such that covariates for the same species across the three study 
areas had more similarities in scales than covariates for different species. 
This is expected if there are species-level associations with scales of 
relationships with habitat factors which are general and consistent (e.g., 
Cushman and McGarigal (2002)). However, our results suggested that 
there is no significant association between the scales of covariates 
selected and taxonomic genera, rejecting our third scaling hypothesis. 
This suggests that the species-level scales associations with habitat fac
tors do not extend to the next higher level of taxonomic association. 
However, differences in the spatial scales between members of the same 
genus have been highlighted, for example, between mainland clouded 
leopard and Sunda clouded leopard (Macdonald et al., 2018; Macdonald 
et al., 2019). Of the covariates used to model suitable habitat for the two 
species, compound topographic index was selected at 500 m by main
land clouded leopard and 1 km by Sunda clouded leopard, and the dif
ference became stronger looking at other shared covariates, with focal 
mean of slope position selected at 8 km by mainland clouded leopard 
and at 250 m by Sunda clouded leopard. Similarly, Vergara et al. (2016) 
found strong differences in the selection of spatial scales between pine 
marten (Martes martes) and stone marten (Martes foina) in the northern 
Iberian Peninsula, with some of the covariates assessed to model habitat 
suitability showing strong displacement between the two species (e.g., 
% crops = 16 km for pine marten and 4 km for beech marten, and % 
forests = 2 km for pine marten and 32 km for beech marten). 

Our results indicated that there is strong relationship between scales 
of covariates and study area. This suggests that there are regional-scale 

ecological or geographical factors that affect scales of habitat relation
ships across multiple species. This may reflect differences in regional 
limiting factors (e.g., Cushman et al. (2013a); Vergara et al. (2016)) that 
result in different factors at different spatial scales being the best pre
dictors in different study areas. Multivariate assessment of the suitable 
habitat for terrestrial vertebrate fauna in Southeast Asia (Chiaverini 
et al., 2022; Macdonald et al., 2020) revealed, for example, that altitu
dinal gradients affected mainland biodiversity at much broader scale 
(32 km) than insular species, which are in turn affected by elevation 
only at a very fine scale (250 m). Differences between study areas have 
been highlighted also for felids: Atzeni et al. (2020) found that snow 
leopard (Panthera uncia) differently selected the response scale for 
limiting habitat factors across two landscapes in China. 

Finally, we found an extremely strong correlation between difference 
in scales and difference in algorithm, supporting our last hypothesis. 
This relationship was almost twice as strong as between any other factor 
and difference in scales, suggesting that selection of spatial scales is 
differently affected by GLM and RF. GLM generally selected broader 
scales than RF, and the strength of the Mantel correlations suggests that 
these methods strongly differ in the scales they selected across models 
for the 12 species (4 species for 3 study areas) in Southeast Asia. Our 
result that GLM systematically predicts broader spatial scales than RF is 
consistent with several other studies that have compared scale selection 
in the two studies (e.g., Cushman et al. (2017); Cushman and Wasser
man (2018)). 

This finding has major implications for species distribution model
ling using scale optimisation. Specifically, if distinct statistical methods 
consistently select different spatial scales, then the results of the scale 
optimisation process are unreliable and not consistently related to un
derlying ecological relationships. However, given this is an empirical 
analysis in which the true relationships between species and habitat 
factors across scales are not known, these results strongly suggest the 
need to use a controlled simulation study (e.g., Atzeni et al. (2020); 
Chiaverini et al. (2021); Kumar et al. (2021)) to systematically evaluate 
the performance of the GLM and RF in terms of correctly identifying the 
underlying scales of relationships. Chiaverini et al. (2021), for example, 
demonstrated that inconsistencies in the scale optimisation process were 
due to sampling bias of the training data. Therefore, since also in our 
study areas camera trap samplings were biased towards forested areas, 
protected areas and easily accessible areas, the discrepancies observed 
between different algorithms might be partly due to sampling bias, and 
further simulations are recommended. 

A key point in machine learning is represented by the data, not only 
by the algorithms. The structure of the training data can have profound 
and critical effects on the outcomes of models trained with the RF al
gorithm. While this is an important point which is worthy of evaluation, 
our dataset was limited to a collection of camera trap data on several 
species which makes it difficult to comprehensively compare the effects 
of the data and its structure. We note that this is better explored with 
simulation, as in a recent paper from our group (Kumar et al., 2021) 
which indeed showed that the spatial pattern and shape of the envi
ronmental manifold itself affects performance of GLM and RF. 

5. Conclusions 

Our study used a vast empirical camera-trap data set for multiple 
felid species across three large geographical areas of Southeast Asia to 
test nine hypotheses about the effects of species distribution modelling 
algorithm and bootstrapping on model prediction and performance. The 
most important results of our study were that (1) there was not a clear 
pattern of RF being superior to GLM in model performance, (2) their 
predictions were spatially highly divergent and (3) there were large and 
systematic differences between GLM and RF in the scales of environ
mental variables they identified. These results are a cause of concern and 
caution in species distribution modelling. One of the premises of SDMs is 
that algorithms used provide objective and informative predictions of 
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the factors driving species-habitat relationships, and ability to accu
rately predict species distribution. If there are large and systematic 
differences in the scales of factors identified and the predicted proba
bility surfaces produced between algorithms, irrespective of the under
lying ecological relationships, then there is likely a much higher degree 
of uncertainty in SDM predictions than was previously appreciated. This 
suggests that much more care should be taken by analysts conducting 
SDM analyses to compare multiple methods to predict their particular 
data sets and select those that are shown to be most effective in that 
system and for those species. Altogether, these results are worrying since 
SDMs are frequently used to design conservation actions. We recom
mend further investigations of the effects of different factors on the 
outcomes of SDMs, preferably by applying simulation experiments in 
which the scales of the species-habitat relationships and the suitable 
habitats distribution are known. 
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