510 research outputs found

    Spectral cross-calibration of VIIRS enhanced vegetation index with MODIS: A case study using year-long global data

    Full text link
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. In this study, the Visible Infrared Imaging Radiometer Suite (VIIRS) Enhanced Vegetation Index (EVI) was spectrally cross-calibrated with the Moderate Resolution Imaging Spectroradiometer (MODIS) EVI using a year-long, global VIIRS-MODIS dataset at the climate modeling grid (CMG) resolution of 0.05°-by-0.05°. Our cross-calibration approach was to utilize a MODIS-compatible VIIRS EVI equation derived in a previous study [Obata et al., J. Appl. Remote Sens., vol.7, 2013] and optimize the coefficients contained in this EVI equation for global conditions. The calibrated/optimized MODIS-compatible VIIRS EVI was evaluated using another global VIIRS-MODIS CMG dataset of which acquisition dates did not overlap with those used in the calibration. The calibrated VIIRS EVI showed much higher compatibility with the MODIS EVI than the original VIIRS EVI, where the mean error (MODIS minus VIIRS) and the root mean square error decreased from -0.021 to -0.003 EVI units and from 0.029 to 0.020 EVI units, respectively. Error reductions on the calibrated VIIRS EVI were observed across nearly all view zenith and relative azimuth angle ranges, EVI dynamic range, and land cover types. The performance of the MODIS-compatible VIIRS EVI calibration appeared limited for high EVI values (i.e., EVI > 0.5) due likely to the maturity of the VIIRS dataset used in calibration/optimization. The cross-calibration methodology introduced in this study is expected to be useful for other spectral indices such as the normalized difference vegetation index and two-band EVI

    Estimating net primary productivity of croplands in Indo-Gangetic Plains using GOME-2 sun-induced fluorescence and MODIS NDVI

    Full text link
    © 2018 Current Science Association, Bengaluru. Recently evolved satellite-based sun-induced fluorescence (SIF) spectroscopy is considered as a direct measure of photosynthetic activity of vegetation. We have used monthly averages of satellite-based SIF retrievals for three agricultural year cycles, i.e. May to April for each of the three years, viz. 2007-08, 2008-09 and 2009-10 to assess comparative performance of SIF and normalized difference vegetation index (NDVI) for predicting net primary productivity (NPP) over the Indo-Gangetic Plains, India. Results show that SIF values for C4 crop-dominated districts were higher than C3 crop-dominated districts during summer and low during winter for all three years. SIF explained more or less above 70% of variance in NPP. The variance explained by integrated NDVI ranged from 60% to 67%. Thus the present study has shown the potential of SIF data for improved modelling of agricultural productivity at a regional scale

    Turbulence generation by a shock wave interacting with a random density inhomogeneity field

    Full text link
    When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role at the early stages of the mixing process in the compressed fluid. This situation emerges naturally in shock interaction with weakly inhomogeneous deuterium-wicked foam targets in Inertial Confinement Fusion (ICF) and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in 2D results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity, and sonic energy flux radiated downstream. These explicit formulas are further simplified in the important asymptotic limits of weak/strong shocks and highly compressible fluids. A comparison with the related problem of a shock interacting with a pre-shock isotropic vorticity field is also presented.Comment: This article corresponds to a presentation given at the Second International Conference and Advanced School "Turbulent Mixing and Beyond," held on 27 July - 07 August 2009 at the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. That Conference Proceeding will be published as a Topical Issue of the Physica Scripta IOP scienc

    Behavior of multitemporal and multisensor passive microwave indices in Southern Hemisphere ecosystems

    Get PDF
    ©2014. American Geophysical Union. All Rights Reserved. This study focused on the time series analysis of passive microwave and optical satellite data collected from six Southern Hemisphere ecosystems in Australia and Argentina. The selected ecosystems represent a wide range of land cover types, including deciduous open forest, temperate forest, tropical and semiarid savannas, and grasslands. We used two microwave indices, the frequency index (FI) and polarization index (PI), to assess the relative contributions of soil and vegetation properties (moisture and structure) to the observations. Optical-based satellite vegetation products from the Moderate Resolution Imaging Spectroradiometer were also included to aid in the analysis. We studied the X and Ka bands of the Advanced Microwave Scanning Radiometer-EOS and Wind Satellite, resulting in up to four observations per day (1:30, 6:00, 13:30, and 18:00-h). Both the seasonal and hourly variations of each of the indices were examined. Environmental drivers (precipitation and temperature) and eddy covariance measurements (gross ecosystem productivity and latent energy) were also analyzed. It was found that in moderately dense forests, FI was dependent on canopy properties (leaf area index and vegetation moisture). In tropical woody savannas, a significant regression (R2) was found between FI and PI with precipitation (R2->-0.5) and soil moisture (R2->-0.6). In the areas of semiarid savanna and grassland ecosystems, FI variations found to be significantly related to soil moisture (R2->-0.7) and evapotranspiration (R2->-0.5), while PI varied with vegetation phenology. Significant differences (p-<-0.01) were found among FI values calculated at the four local times. Key Points Passive microwave indices can be used to estimate vegetation moisture Microwave observations were supported by flux data Passive microwave indices could be used to estimate evapotranspiratio

    Multi-scale phenology from digital time-lapse camera to Sentinel-2 and MODIS over Australian pastures

    Full text link
    As a natural ecosystem dominated by grasses, phenological studies of pastures have attracted increased attention for their important roles in global carbon cycling, ecosystem biodiversity, and public health. To better understand pasture phenology from in-situ to regional scales, accurate monitoring of pasture greenness variations across different scales is critical. As an alternative approach to labor-intensive field surveys, digital time-lapse cameras (termed phenocams) can provide diurnal and long-term vegetation greenness observation at in-situ scale with less impact from atmospheric effects. Even so, monitoring of phenology at regional to global scales only can be obtained by satellite remote sensing. The data from satellite sensors whether medium-resolution (i.e. Moderate Resolution Imaging Spectrodiometer, MODIS, 250 m) or fine spatial resolution (i.e. Sentinel-2 mission, 10 m) is widely used for vegetation phenology monitoring. However, achieving accurate pasture greenness dynamics using satellite data remains challenging due to limitations resulting from heterogeneity in Australian pastures

    Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes

    Get PDF
    © 2014 IOP Publishing Ltd. The sensitivity of ecosystem gross primary production (GPP) to availability of water and photosynthetically active radiation (PAR) differs among biomes. Here we investigated variations of ecosystem light-use-efficiency (eLUE: GPP/PAR) and water-use-efficiency (eWUE: GPP/evapotranspiration) among seven Australian eddy covariance sites with differing annual precipitation, species composition and temperature. Changes to both eLUE and eWUE were primarily correlated with atmospheric vapor pressure deficit (VPD) at multiple temporal scales across biomes, with minor additional correlations observed with soil moisture and temperature. The effects of leaf area index on eLUE and eWUE were also relatively weak compared to VPD, indicating an intrinsic dependency of eLUE and eWUE on climate. Additionally, eLUE and eWUE were statistically different for biomes between summer and winter, except eWUE for savannas and the grassland. These findings will improve our understanding of how light- and water-use traits in Australian ecosystems may respond to climate change

    Urban−rural gradients reveal joint control of elevated CO₂ and temperature on extended photosynthetic seasons

    Get PDF
    Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. Due to limited experimental assessments, a comprehensive understanding of the variations of photosynthetic phenology under future climate and its associated controlling factors is still missing, despite its high sensitivities to climate. Here, we develop an approach that uses cities as natural laboratories, since plants in urban areas are often exposed to higher temperatures and carbon dioxide (CO₂) concentrations, which reflect expected future environmental conditions. Using more than 880 urban-rural gradients across the Northern Hemisphere (≥30° N), combined with concurrent satellite retrievals of Sun-induced chlorophyll fluorescence (SIF) and atmospheric CO₂, we investigated the combined impacts of elevated CO₂ and temperature on photosynthetic phenology at the large scale. The results showed that, under urban conditions of elevated CO2 and temperature, vegetation photosynthetic activity began earlier (−5.6 ± 0.7 d), peaked earlier (−4.9  ± 0.9 d) and ended later (4.6 ± 0.8 d) than in neighbouring rural areas, with a striking two- to fourfold higher climate sensitivity than greenness phenology. The earlier start and peak of season were sensitive to both the enhancements of CO₂ and temperature, whereas the delayed end of season was mainly attributed to CO₂ enrichments. We used these sensitivities to project phenology shifts under four Representative Concentration Pathway climate scenarios, predicting that vegetation will have prolonged photosynthetic seasons in the coming two decades. This observation-driven study indicates that realistic urban environments, together with SIF observations, provide a promising method for studying vegetation physiology under future climate change

    Mulga, a major tropical dry open forest of Australia: Recent insights to carbon and water fluxes

    Get PDF
    © 2016 IOP Publishing Ltd. Mulga, comprised of a complex of closely related Acacia spp., grades from a low open forest to tall shrublands in tropical and sub-tropical arid and semi-arid regions of Australia and experiences warm-to-hot annual temperatures and a pronounced dry season. This short synthesis of current knowledge briefly outlines the causes of the extreme variability in rainfall characteristic of much of central Australia, and then discusses the patterns and drivers of variability in carbon and water fluxes of a central Australian low open Mulga forest. Variation in phenology and the impact of differences in the amount and timing of precipitation on vegetation function are then discussed. We use field observations, with particular emphasis on eddy covariance data, coupled with modelling and remote sensing products to interpret inter-seasonal and inter-annual patterns in the behaviour of this ecosystem. We show that Mulga can vary between periods of near carbon neutrality to periods of being a significant sink or source for carbon, depending on both the amount and timing of rainfall. Further, we demonstrate that Mulga contributed significantly to the 2011 global land sink anomaly, a result ascribed to the exceptional rainfall of 2010/2011. Finally, we compare and contrast the hydraulic traits of three tree species growing close to the Mulga and show how each species uses different combinations of trait strategies (for example, sapwood density, xylem vessel implosion resistance, phenological guild, access to groundwater and Huber value) to co-exist in this semi-arid environment. Understanding the inter-annual variability in functional behaviour of this important arid-zone biome and mechanisms underlying species co-existence will increase our ability to predict trajectories of carbon and water balances for future changing climates

    Disentangling Climate and LAI Effects on Seasonal Variability in Water Use Efficiency Across Terrestrial Ecosystems in China

    Full text link
    ©2018. American Geophysical Union. All Rights Reserved. Water use efficiency (WUE), the ratio of gross primary productivity (GPP) over evapotranspiration (ET), is a critical ecosystem function. However, it is difficult to distinguish the individual effects of climatic variables and leaf area index (LAI) on WUE, mainly due to the high collinearity among these factors. Here we proposed a partial least squares regression-based sensitivity algorithm to confront the issue, which was first verified at seven ChinaFlux sites and then applied across China. The results showed that across all biomes in China, monthly GPP (0.42–0.65), ET (0.33–0.56), and WUE (0.01–0.31) showed positive sensitivities to air temperature, particularly in croplands in northeast China and forests in southwest China. Radiation exerted stronger effects on ET (0.55–0.78) than GPP (0.19–0.65), resulting in negative responses (−0.44 to 0.04) of WUE to increased radiation among most biomes. Increasing precipitation stimulated both GPP (0.06–0.17) and ET (0.05–0.12) at the biome level, but spatially negative effects of excessive precipitation were also found in some grasslands. Both monthly GPP (−0.01 to 0.29) and ET (0.02–0.12) showed weak or moderate responses to vapor pressure deficit among biomes, resulting in weak response of monthly WUE to vapor pressure deficit (−0.04 to 0.08). LAI showed positive effects on GPP (0.18–0.60), ET (0–0.23), and WUE (0.13–0.42) across biomes, particularly on WUE in grasslands (0.42 ± 0.30). Our results highlighted the importance of LAI in influencing WUE against climatic variables. Furthermore, the sensitivity algorithm can be used to inform the design of manipulative experiments and compare with factorial simulations for discerning effects of various variables on ecosystem functions

    Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types

    Full text link
    © 2016 Elsevier Ltd Terrestrial ecosystem gross primary production (GPP) is the largest component in the global carbon cycle. The enhanced vegetation index (EVI) has been proven to be strongly correlated with annual GPP within several biomes. However, the annual GPP-EVI relationship and associated environmental regulations have not yet been comprehensively investigated across biomes at the global scale. Here we explored relationships between annual integrated EVI (iEVI) and annual GPP observed at 155 flux sites, where GPP was predicted with a log-log model: ln(GPP)=a×ln(iEVI)+b. iEVI was computed from MODIS monthly EVI products following removal of values affected by snow or cold temperature and without calculating growing season duration. Through categorisation of flux sites into 12 land cover types, the ability of iEVI to estimate GPP was considerably improved (R2 from 0.62 to 0.74, RMSE from 454.7 to 368.2 g C m−2 yr−1). The biome-specific GPP-iEVI formulae generally showed a consistent performance in comparison to a global benchmarking dataset (R2 = 0.79, RMSE = 387.8 g C m−2 yr−1). Specifically, iEVI performed better in cropland regions with high productivity but poorer in forests. The ability of iEVI in estimating GPP was better in deciduous biomes (except deciduous broadleaf forest) than in evergreen due to the large seasonal signal in iEVI in deciduous biomes. Likewise, GPP estimated from iEVI was in a closer agreement to global benchmarks at mid and high-latitudes, where deciduous biomes are more common and cloud cover has a smaller effect on remote sensing retrievals. Across biomes, a significant and negative correlation (R2 = 0.37, p < 0.05) was observed between the strength (R2) of GPP-iEVI relationships and mean annual maximum leaf area index (LAImax), and the relationship between the strength and mean annual precipitation followed a similar trend. LAImax also revealed a scaling effect on GPP-iEVI relationships. Our results suggest that iEVI provides a very simple but robust approach to estimate spatial patterns of global annual GPP whereas its effect is comparable to various light-use-efficiency and data-driven models. The impact of vegetation structure on accuracy and sensitivity of EVI in estimating spatial GPP provides valuable clues to improve EVI-based models
    • …
    corecore