22 research outputs found

    Aquaporin 5 Interacts with Fluoride and Possibly Protects Against Caries

    Get PDF
    Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interact with fluoride.Fil: Anjomshoaa, Ida. University of Pittsburgh; Estados UnidosFil: Briseño Ruiz, Jessica. University of Pittsburgh; Estados UnidosFil: Deeley, Kathleen. University of Pittsburgh; Estados UnidosFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; ArgentinaFil: Mereb, Juan C.. Provincia de Río Negro. Ministerio de Salud. Hospital de Área El Bolsón ; ArgentinaFil: Leite, Aline L.. Universidade de Sao Paulo; BrasilFil: Barreta, Priscila A. T.. Universidade de Sao Paulo; BrasilFil: Silva, Thelma L.. Universidade de Sao Paulo; BrasilFil: Dizak, Piper. University of Pittsburgh; Estados UnidosFil: Ruff, Timothy. University of Pittsburgh; Estados UnidosFil: Patir, Asli. İstanbul Medipol Üniversitesi; TurquíaFil: Koruyucu, Mine. İstanbul Üniversitesi; TurquíaFil: Abbasoğlu, Zerrin. Yeditepe Üniversitesi; TurquíaFil: Casado, Priscila L.. Universidade Federal Fluminense; BrasilFil: Brown, Andrew. University of Pittsburgh; Estados UnidosFil: Zaky, Samer H.. University of Pittsburgh; Estados UnidosFil: Bayram, Merve. İstanbul Medipol Üniversitesi; TurquíaFil: Küchler, Erika C.. University of Pittsburgh; Estados UnidosFil: Cooper, Margaret E.. University of Pittsburgh; Estados UnidosFil: Liu, Kai. University of Pittsburgh; Estados UnidosFil: Marazita, Mary L.. University of Pittsburgh; Estados UnidosFil: Tanboğa, İlknur. Marmara Üniversitesi; TurquíaFil: Granjeiro, José M.. Universidade Federal Fluminense; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; BrasilFil: Seymen, Figen. İstanbul Üniversitesi; TurquíaFil: Castilla, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; Argentina. Fundación Oswaldo Cruz; BrasilFil: Orioli, Iêda M.. Universidade Federal do Rio de Janeiro; BrasilFil: Sfeir, Charles. University of Pittsburgh; Estados UnidosFil: Owyang, Hongjiao. Marmara Üniversitesi; TurquíaFil: Rabelo Buzalaf, Marilia Afonso. Universidade de Sao Paulo; BrasilFil: Vieira, Alexandre R.. University of Pittsburgh; Estados Unido

    Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction

    Get PDF
    The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing ‘pseudo-single-crystal’ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale

    Isotopic investigations of Chinese ceramics

    Get PDF
    This chapter provides insights into Chinese ceramic technologies of both bodies and glazes as well as provenance by using isotopes applied to a number of case studies. The use of Sr isotopes to investigate Chinese high-fired Celadon wares and blue-and-white Jingdezhen porcelain (Jiangxi province) has revealed a clear distinction associated with the fluxes used in the glazes: plant ash in celadons and limestone in Jingdezhen glazes, something that is not clear from major element analysis. Furthermore, the technique is able to suggest by implication the nature of the silica source used in the glazes—normally weathered granitic rocks or metamorphic rocks (porcelain stone) which also contains Sr. This leads to an isotopic mixing line of the 2 Sr-rich components and is proof that 2 Sr-rich components were mixed in the manufacture of limestone glaze. This is not the case for plant ash glazes. Eventually, the technique may be used in provenance studies. Like Sr isotope analysis, lead isotope analysis relies on there being a lack of or a minimal change in the isotope ratios when the raw materials are heated. Lead isotope analysis links the use of lead in glazes to the original metal ore and if a kiln uses a distinctive lead source in its glazes, it can provide a provenance for the pottery. This has been very successful in distinguishing Chinese Tang sancai wares made in the Huangye, Huangbao, Liquanfang and Qionglai kilns
    corecore