203 research outputs found
Low-energy Antiproton Interaction with Helium
An ab initio potential for the interaction of the neutral helium atom with
antiprotons and protons is calculated using the Born-Oppenheimer approximation.
Using this potential, the annihilation cross section for antiprotons in the
energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe
Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion
We discuss the possibility that dense antihydrogen could provide a path
towards a mechanism for a deep space propulsion system. We concentrate at
first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a
Bose-Einstein Condensate, matter (or antimatter) is in a coherent state
analogous to photons in a laser beam, and individual atoms lose their
independent identity. This allows many atoms to be stored in a small volume. In
the context of recent advances in producing and controlling BECs, as well as in
making antihydrogen, this could potentially provide a revolutionary path
towards the efficient storage of large quantities of antimatter, perhaps
eventually as a cluster or solid.Comment: 12 pages, 3 figure
Charge-Transfer from Molecular-Hydrogen to Stored O-2+ and O-3+ Ions
Journals published by the American Physical Society can be found at http://publish.aps.org
Radiative recombination of bare Bi83+: Experiment versus theory
Electron-ion recombination of completely stripped Bi83+ was investigated at
the Experimental Storage Ring (ESR) of the GSI in Darmstadt. It was the first
experiment of this kind with a bare ion heavier than argon. Absolute
recombination rate coefficients have been measured for relative energies
between ions and electrons from 0 up to about 125 eV. In the energy range from
15 meV to 125 eV a very good agreement is found between the experimental result
and theory for radiative recombination (RR). However, below 15 meV the
experimental rate increasingly exceeds the RR calculation and at Erel = 0 eV it
is a factor of 5.2 above the expected value. For further investigation of this
enhancement phenomenon the electron density in the interaction region was set
to 1.6E6/cm3, 3.2E6/cm3 and 4.7E6/cm3. This variation had no significant
influence on the recombination rate. An additional variation of the magnetic
guiding field of the electrons from 70 mT to 150 mT in steps of 1 mT resulted
in periodic oscillations of the rate which are accompanied by considerable
changes of the transverse electron temperature.Comment: 12 pages, 14 figures, to be published in Phys. Rev. A, see also
http://www.gsi.de/ap/ and http://www.strz.uni-giessen.de/~k
Quantum corrected electron holes
The theory of electron holes is extended into the quantum regime. The
Wigner--Poisson system is solved perturbatively based in lowest order on a
weak, standing electron hole. Quantum corrections are shown to lower the
potential amplitude and to increase the number of deeply trapped electrons.
They, hence, tend to bring this extreme non--equilibrium state closer to
thermodynamic equilibrium, an effect which can be attributed to the tunneling
of particles in this mixed state system.Comment: 12 pages, 3 figure
Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment
We have measured the cosmic ray spectrum above 10^17.2 eV using the two air
fluorescence detectors of the High Resolution Fly's Eye observatory operating
in monocular mode. We describe the detector, photo-tube and atmospheric
calibrations, as well as the analysis techniques for the two detectors. We fit
the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty,
revtex4.cl
- …
