1,478 research outputs found

    Matter relative to quantum hypersurfaces

    Full text link
    We explore the canonical description of a scalar field as a parameterized field theory on an extended phase space that includes additional embedding fields that characterize spacetime hypersurfaces X\mathsf{X} relative to which the scalar field is described. This theory is quantized via the Dirac prescription and physical states of the theory are used to define conditional wave functionals ∣ψϕ[X]⟩|\psi_\phi[\mathsf{X}]\rangle interpreted as the state of the field relative to the hypersurface X\mathsf{X}, thereby extending the Page-Wootters formalism to quantum field theory. It is shown that this conditional wave functional satisfies the Tomonaga-Schwinger equation, thus demonstrating the formal equivalence between this extended Page-Wootters formalism and standard quantum field theory. We also construct relational Dirac observables and define a quantum deparameterization of the physical Hilbert space leading to a relational Heisenberg picture, which are both shown to be unitarily equivalent to the Page-Wootters formalism. Moreover, by treating hypersurfaces as quantum reference frames, we extend recently developed quantum frame transformations to changes between classical and nonclassical hypersurfaces. This allows us to exhibit the transformation properties of a quantum field under a larger class of transformations, which leads to a frame-dependent particle creation effect.Comment: 21 pages, 3 figures. Comments welcom

    Hydroxyfurans and Their Biological Significance

    Get PDF
    Hydroxyfurans, particularly the mono- and di-β-substituted types (prepared from furans and by ring closure procedures) have been examined biologically, particularly for their growth stimulation effects on bacteria, yeasts and various higher plants. A discussion is included of the synthetic procedures and the proof of structure of the variously substituted hydroxyfurans

    Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving

    Get PDF
    The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution

    Quantum Relativity of Subsystems

    Get PDF
    One of the most basic notions in physics is the partitioning of a system into subsystems, and the study of correlations among its parts. In this work, we explore these notions in the context of quantum reference frame (QRF) covariance, in which this partitioning is subject to a symmetry constraint. We demonstrate that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement. We further demonstrate that subalgebras which commute before imposing the symmetry constraint can translate into non-commuting algebras in a given QRF perspective after symmetry imposition. Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra. Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.Comment: 8+9 pages, 1 figur

    Bromodeoxyuridine amplifies free-radical-mediated DNA damage

    Full text link

    Rabl's model of the interphase chromosome arrangement tested in Chinise hamster cells by premature chromosome condensation and laser-UV-microbeam experiments

    Get PDF
    In 1885 Carl Rabl published his theory on the internal structure of the interphase nucleus. We have tested two predictions of this theory in fibroblasts grown in vitro from a female Chinese hamster, namely (1) the Rabl-orientation of interphase chromosomes and (2) the stability of the chromosome arrangement established in telophase throughout the subsequent interphase. Tests were carried out by premature chromosome condensation (PCC) and laser-UV-microirradiation of the interphase nucleus. Rabl-orientation of chromosomes was observed in G1 PCCs and G2 PCCs. The cell nucleus was microirradiated in G1 at one or two sites and pulse-labelled with 3H-thymidine for 2h. Cells were processed for autoradiography either immediately thereafter or after an additional growth period of 10 to 60h. Autoradiographs show unscheduled DNA synthesis (UDS) in the microirradiated nuclear part(s). The distribution of labelled chromatin was evaluated in autoradiographs from 1035 cells after microirradiation of a single nuclear site and from 253 cells after microirradiation of two sites. After 30 to 60h postincubation the labelled regions still appeared coherent although the average size of the labelled nuclear area fr increased from 14.2% (0h) to 26.5% (60h). The relative distance dr, i.e. the distance between two microirradiated sites divided by the diameter of the whole nucleus, showed a slight decrease with increasing incubation time. Nine metaphase figures were evaluated for UDS-label after microirradiation of the nuclear edge in G1. An average of 4.3 chromosomes per cell were labelled. Several chromosomes showed joint labelling of both distal chromosome arms including the telomeres, while the centromeric region was free from label. This label pattern is interpreted as the result of a V-shaped orientation of these particular chromosomes in the interphase nucleus with their telomeric regions close to each other at the nuclear edge. Our data support the tested predictions of the Rabl-model. Small time-dependent changes of the nuclear space occupied by single chromosomes and of their relative positions in the interphase nucleus seem possible, while the territorial organization of interphase chromosomes and their arrangement in general is maintained during interphase. The present limitations of the methods used for this study are discussed
    • …
    corecore