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Abstract The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-
existing immunity interfering with the persistence and maturation of vaccine-induced B cell 
responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited 
into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these 
lineages against vaccine antigens can occur. However, it remains to be determined whether 
seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and 
previous work has found no significant increase in somatic hypermutation among influenza-binding 
lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate 
this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first 
validate this test through simulations and survey measurable evolution across multiple conditions. 
We find significant heterogeneity in measurable B cell evolution across conditions, with enrich-
ment in primary response conditions such as HIV infection and early childhood development. We 
then show that measurable evolution following influenza vaccination is highly compartmentalized: 
while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages 
containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive 
from memory B cells. We conclude from these findings that seasonal influenza virus vaccination 
can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy 
of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell 
evolution.
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Introduction
Measurably evolving populations are systems that undergo evolution rapidly enough for significant 
genetic differences to be detected in longitudinally sampled timepoints (Drummond et al., 2003). 
While this concept is frequently applied to viruses such as HIV (Rambaut et al., 2004) and SARS-
CoV-2 (e.g., du Plessis et al., 2021), B cells experience similarly rapid evolution during affinity matura-
tion. B cell affinity maturation is critical for developing high-affinity antibodies in response to infection 
and vaccination (Shlomchik and Weisel, 2012; Victora and Nussenzweig, 2012). During affinity 
maturation, somatic hypermutation (SHM) introduces mutations into the B cell receptor (BCR) loci at 
a rate orders of magnitude higher than the background rate of somatic mutations (McKean et al., 
1984; Murphy et al., 2008). These modified BCRs are selected based on their binding affinity, and 
the process repeats cyclically within germinal centers (GCs Teng and Papavasiliou, 2007; Victora 
and Nussenzweig, 2012). Infection or vaccination can also stimulate pre-existing memory B cells 
that rapidly differentiate into antibody secreting plasmablasts or possibly re-enter GCs to undergo 
additional affinity maturation (Ellebedy, 2018; Mesin et al., 2020). A lack of vaccine-specific affinity 
maturation is thought to underlie the poor efficacy of seasonal influenza virus vaccination (Arevalo 
et al., 2020; Ellebedy, 2018). While recent work has shown that antigen-specific B cell lineages can 
be recruited into GCs following influenza vaccination (Turner et  al., 2020), other work has been 
unable to detect significant increases in SHM frequency among circulating influenza-binding antibody 
lineages following vaccination (Ellebedy et al., 2016).

Whether seasonal influenza vaccination stimulates an increase in SHM frequency can be answered 
by determining whether influenza-binding B cell lineages found in GCs are measurably evolving 
following vaccination. This is distinct from simply quantifying SHM frequency. While influenza vaccina-
tion stimulates memory B cell lineages with high SHM frequency (Laserson et al., 2014; Wrammert 
et al., 2008), these lineages are only measurably evolving if their level of SHM detectably increases 
during the sampling interval surrounding vaccination. In this study, we show how a phylogenetic test 
of measurable evolution can be a powerful tool to detect increasing SHM frequency in longitudi-
nally sampled BCR sequence datasets (Duchêne et al., 2015; Murray et al., 2016). We validate this 
approach through simulations and a survey of measurable evolution in B cell repertoires across a wide 
range of infections and vaccinations. We document significant heterogeneity among conditions, with 
some like HIV infection and primary hepatitis B vaccination enriched for measurably evolving lineages 
in the blood. We further show that while most circulating lineages following influenza virus vaccination 
are not measurably evolving, a subset of memory B cell lineages re-enter GCs and increase in SHM 
frequency.

Results
Detecting measurable evolution in longitudinally sampled BCR 
repertoires
We develop a framework to test for measurable evolution in B cells based on longitudinally sampled 
sequence data from the BCR variable region. After preprocessing the sequencing data, we first iden-
tify clonal lineages – B cells that descend from a common V(D)J rearrangement – using clustering 
based on nucleotide sequence similarity, which we have previously shown detects clonal relationships 
with high confidence (Gupta et al., 2017; Zhou and Kleinstein, 2019). The pattern of shared SHM 
among BCR sequences within a lineage is then used to build a B cell lineage tree, which represents a 
lineage’s history of SHM. Branch lengths within these trees represent SHM per site. The divergence 
of each tip is the sum of branch lengths leading back to the lineage’s most recent common ancestor. 
In evolving lineages, sequences sampled at later timepoints are expected to have higher divergence 
than those from earlier timepoints (Figure 1A). To estimate the rate of evolution over time, we calcu-
late the slope of the regression line between timepoint (weeks) and divergence (SHM/site) for each tip 
(Figure 1B, E; Rambaut et al., 2016). Because tips are not independent, standard linear regression 
p values are improper. We instead quantify significance using a modified phylogenetic date random-
ization test (Duchêne et al., 2015; Murray et al., 2016). This tests whether the Pearson’s correlation 
between divergence and time is significantly greater than that observed in the same tree with time-
points randomized among tips (Figure 1C, F). To account for population structure and sequencing 
error, we permute timepoints among single-timepoint monophyletic clusters of tips rather than 
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individual tips (Figure 1—figure supplements 1 and 2; Duchêne et al., 2015; Murray et al., 2016). 
Further, it is possible that the combined effects of PCR and sequencing error will generate tree struc-
tures with multiple spurious tips radiating from a single node. This could increase the error rate of the 
date randomization test. Because trees are strictly binary, this would produce clusters of zero-length 
branches (soft polytomies) that could increase the error rate. To limit potential effects of this source of 
error, we resolve polytomies into the fewest number of single-timepoint monophyletic clades possible 
(Figure 1—figure supplements 1 and 2). We refer to lineages with a date randomization test p < 
0.05 as ‘measurably evolving’. To limit our analyses to lineages with adequate statistical power, we 
include only lineages with ≥15 total sequences sampled over at least 3 weeks, and have a minimum 
possible p value <0.05 based on the number of distinct permutations. Because we use a p value cutoff 
of 0.05, we expect a false positive rate of approximately 5% if no measurable evolution is occurring. 
We therefore refer to datasets with >5% measurably evolving lineages as ‘enriched’ for measurable 
evolution. This test is implemented within the Immcantation.org framework in the R package dowser 
(Hoehn et al., 2020).

To determine the necessary sampling interval to detect B cell evolution, we benchmarked the 
date randomization test using affinity maturation simulations performed with the package bcr-phylo 
(Davidsen and Matsen, 2018; Ralph and Matsen, 2020). This simulates alternating GC cycles of B 
cell proliferation, SHM, and selection based on amino acid similarity to a target sequence. Within 
these simulations, each lineage was first sampled after 10 simulated GC cycles, and then sampled a 
second time after a variable number of additional cycles. Using this framework in which all lineages 
are evolving, the date randomization test detected measurable evolution in 47% of lineages after 
10 additional GC cycles, and 77% after 15 additional cycles (Figure 1G). Given a GC cycle time of 

eLife digest When the immune system encounters a disease-causing pathogen, it releases anti-
bodies that can bind to specific regions of the bacterium or virus and help to clear the infection. These 
proteins are generated by B cells which, upon detecting the pathogen, can begin to mutate and alter 
the structure of the antibody they produce: the better the antibody is at binding to the pathogen, the 
more likely the B cell is to survive. This process of evolution produces B cells that make more effective 
antibodies. After the infection, some of these cells become ‘memory B cells’ which can be stimulated 
in to action when the pathogen invades again.

Many vaccines also depend on this process to trigger the production of memory B cells that can 
fight off a specific disease-causing agent. However, it is unclear to what extent memory B cells that 
already exist are able to continue to evolve and modify their antibodies. This is particularly important 
for the flu vaccine, as the virus that causes influenza rapidly mutates. To provide high levels of protec-
tion, the memory B cells formed following the vaccine may therefore need to evolve to make different 
antibodies that recognize mutated forms of the virus.

It is thought that the low effectiveness of the flu vaccine is partially because the response it triggers 
does not stimulate additional evolution of memory B cells. To test this theory, Hoehn et al. developed 
a computational method that can detect the evolution of B cells over time. The tool was applied to 
samples collected from the blood and lymph nodes (organ where immune cells reside) of people who 
recently received the flu vaccine. The results were then compared to B cells taken from people after 
different infections, vaccinations, and other conditions.

Hoehn et al. found the degree to which B cells evolve varies significantly between conditions. For 
example, B cells produced during chronic HIV infections frequently evolved over time, while such 
evolution was rarely observed during the autoimmune disease myasthenia gravis. The analysis also 
showed that memory B cells produced by the flu vaccine were able to evolve if recruited to the lymph 
nodes, but this was rarely detected in B cells in the blood.

These findings suggest the low efficacy of the flu vaccine is not due to a complete lack of B cell 
evolution, but likely due to other factors. For instance, it is possible the evolutionary process it stim-
ulates is not as robust as in other conditions, or is less likely to produce long-lived B cells that release 
antibodies. More research is needed to explore these ideas and could lead to the development of 
more effective flu vaccines.

https://doi.org/10.7554/eLife.70873
https://Immcantation.org


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Hoehn et al. eLife 2021;0:e70873. DOI: https://doi.org/10.7554/eLife.70873 � 4 of 25

50

100

Sample
time

(weeks)

Sample time (weeks)

D
ive

rg
en

ce
 fr

om
 M

R
C

A 
(S

H
M

/s
ite

)

Correlation, divergence vs time
R

ep
et

iti
on

s
R

ep
et

iti
on

s

A B C

D E F

G H

0.1

0.00

0.05

0.10

0.15

0.20

0 50 100 150

0.00

0.05

0.10

0.15

0.20

0 50 100 150

Slope = 8.1x10 
-4

Slope = -3x10 -5

0

25

50

75

100

0.0 0.5

0

25

50

75

100

0.0

p = 1x10 
r =  0.79

-5

p = 0.54 
r =  -0.025

Sample interval, generations after 10 Generation time (hours)

10.8% 25.3% 78.3% 93.5%

0

1

2

3

5

2 5 10 15 20 30

va
lu

e)

99.5% 90.2%

0

1

2

3

5

12

va
lu

e)

Figure 1. Detecting measurable evolution in B cell lineages. (A) Example B cell lineage tree from Liao et al., 2013 showing increasing divergence 
with sample time. Branch lengths show somatic hypermutation (SHM)/site according to scale bar in (D). (B) Rate of SHM accumulation over time 
estimated using a regression of divergence vs time in tree (A). (C) Significance of the relationship between divergence and time estimated using a date 
randomization test comparing the Pearson’s correlation (r) between divergence and time in tree (A). (D–F) Same plots as (A–C) but on a tree that is 
not measurably evolving. (G) Simulation-based power analysis shows the permutation test has high power over an interval of at least 10–30 GC cycles 
(generations). Lineages were sampled once at generation 10, and a second time after the specified number of additional generations have elapsed. 
Percentage of lineages with p < 0.05 are listed above, rounded to three significant digits. The dotted line corresponds to p = 0.05. (H) Simulation-based 
analysis reproducing the sampling of Laserson et al., 2014 shows the test has high power even at slow (24 hr) GC cycle times.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Clustered date randomization and resolution of polytomies.

Figure supplement 2. Comparison of date randomization strategies.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.70873
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6–24 hr, 15 cycles corresponds to 4–15 days, within the timeframe of many longitudinal B cell reper-
toire studies (Ellebedy et al., 2016; Laserson et al., 2014). Interestingly, the date randomization test 
had higher power to detect measurable evolution in simulations of neutral evolution than those that 
included selection (Figure 1—figure supplements 3–4). This is likely because selection can reduce 
the rate of divergence within lineages compared to neutral evolution (Figure 1—figure supplement 
5). To quantify the false positive rate, we repeated these calculations on the same simulations but with 
randomized sample time associations. Here, the date randomization test found measurable evolu-
tion in <4% in each case, indicating a low false positive rate (Figure 1—figure supplements 3–4). 
These analyses demonstrate that the date randomization test has sufficient sensitivity and specificity 
to detect ongoing B cell evolution from longitudinally sampled BCR data.

Primary immune responses are enriched for measurably evolving 
lineages
To further validate our approach, we tested for measurable evolution in cases of known or suspected 
affinity maturation in humans. We hypothesized that primary immune responses would be enriched 
for measurably evolving lineages. To test this, we used publicly available data primarily from the 
Observed Antibody Space (OAS) database (Kovaltsuk et al., 2018) to survey measurable evolution 
in BCR datasets from 99 human subjects in 21 studies spanning 10 conditions including HIV infec-
tion, Ebola virus infection, and healthy controls (Table 1). We observed considerable heterogeneity 
in measurable evolution among conditions. Confirming our hypothesis, we observed an enrichment 
of measurably evolving lineages (>5% of tested lineages) in primary immune responses including HIV 
infection, meningococcus vaccination, primary but not secondary hepatitis B vaccination, and early 
childhood development (Table 1, Figure 2A, and Figure 2—figure supplement 1).

Chronic HIV infection stimulates ongoing affinity maturation as B cells evolve to contain viral 
escape mutants (Liao et al., 2013; Wendel et al., 2020). Consistent with this arms race, HIV infection 
was more enriched for measurably evolving lineages than other conditions surveyed, with each study 
having between 5.9% and 53% of lineages measurably evolving (Figure 2A). Lineages from subjects 
with broadly neutralizing anti-HIV lineages sampled over multiple years (Doria-Rose et  al., 2014; 
Landais et al., 2017; Liao et al., 2013; Wu et al., 2015) were particularly enriched (26–53% measur-
ably evolving). Importantly, the HIV studies included were sampled over longer time periods than 
studies of other conditions (mean = 225 vs 45 weeks, Table 1). To determine whether these results 
were simply due to longer sampling intervals, we repeated our analysis of subjects with HIV using only 
samples within the first 60 weeks of the study. These truncated datasets were still highly enriched for 
measurably evolving lineages (6.9–64%) compared to other non-HIV datasets with similar sampling 
intervals (0–7.2%, Figure 2A). This indicates that the observed high frequency of measurably evolving 
lineages is not simply due to long sampling intervals.

Other primary immune responses were also enriched for measurably evolving lineages (Table 1, 
Figure 2A). B cell lineages from healthy children sampled during the first 3 years of life were enriched 
for measurable evolution (14%), possibly reflecting continual exposure to novel antigens (Nielsen 
et al., 2019). We also observed an enrichment of measurably evolving lineages following primary 
meningococcus vaccination (10%; Galson et al., 2015a) and primary but not secondary hepatitis B 
vaccination (7.2% vs 2.9%, respectively; Galson et al., 2016; Galson et al., 2015b). Primary hepatitis 
B vaccinees were sampled over a longer time period than secondary vaccines, so this difference may 
also be due to different sampling intervals (Figure 2—figure supplement 2). Further, allergen-specific 
immunotherapy, which stimulates tolerance of allergy-causing antigens through exposure, was also 
enriched for measurable evolution (6.5%; Levin et  al., 2016). Interestingly, Ebola virus infection 
showed a borderline (5%) percentage of measurably evolving lineages (Table 1) despite likely being a 

Figure supplement 3. Simulation-based power analysis.

Figure supplement 4. Simulation-based power analysis recreating experimental sampling design.

Figure supplement 5. Mean divergence of lineages from simulations in Figure 1—figure supplement 3 under neutral evolution (selection = 0) or 
strong selection (selection = 1).

Figure 1 continued

https://doi.org/10.7554/eLife.70873
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primary infection. Overall, however, these results confirm that the date randomization test can detect 
ongoing SHM in empirical datasets where it is expected to be occurring.

We next investigated whether measurable evolution was associated with antigen-binding lineages. 
While antigen-binding information was not available for most B cell lineages surveyed, some studies 
included experimentally validated monoclonal antibody sequences (mAbs). Lineages containing these 
sequences thus contain B cells that bind to the antigen under study. Experimentally validated mAbs 
were included from six studies: four in HIV (Doria-Rose et al., 2014; Landais et al., 2017; Liao et al., 
2013; Wu et al., 2015), one in Ebola virus infection (Davis et al., 2019), and one in influenza vaccine 
response (Turner et  al., 2020). We found that across these studies measurably evolving lineages 
were more likely to contain mAbs than nonmeasurably evolving lineages (p = 0.031, Wilcoxon test, 
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Figure 2. Measurable evolution in B cell lineages across time and conditions. (A) Percentage of lineages that are measurably evolving within each study 
(Table 1, Figure 1C). The dotted line indicates 5%, the percent expected under the null hypothesis that there is no measurable evolution occurring in 
a given dataset. Orange triangles indicate HIV datasets truncated to only include data within the first 60-week sampling interval. Note that three HIV 
studies were not truncated because they contained <2 sample timepoints within the first 60 weeks of sampling (Huang et al., 2016; Schanz et al., 
2014; Wu et al., 2015). (B) Mean initial germline divergence (sum of branch lengths) from germline to sequences from each adjusted measurably 
evolving lineage’s first timepoint. Note that ‘Early/Late’ HIV in (B) separates studies by time since initial infection, while ‘HIV, first 60 weeks’ in (A) includes 
only samples taken over the first 60 weeks of sampling. Each point is a measurably evolving lineage with a Benjamini–Hochberg adjusted p value <0.1. 
Wilcoxon tests were used to compare divergence levels among datasets.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Date randomization p value histograms from blood-derived lineages across all studies.

Figure supplement 2. Comparison of measurably evolving lineages among hepatitis B vaccine schedules.

Figure supplement 3. Enrichment of antigen-binding monoclonal antibody (mAb) sequences across studies.

Figure supplement 4. Initial germline divergence with alternate p value thresholds.
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Figure  2—figure supplement 3). This is consistent with the hypothesis that measurably evolving 
lineages are actively responding to antigens relevant to the condition being studied.

Measurably evolving lineages are rare in peripheral blood following 
influenza vaccination
Seasonal influenza vaccination is believed to trigger a memory B cell response in adults. If memory B 
cells rarely re-enter GCs to undergo additional affinity maturation (Mesin et al., 2020), and there is 
little evolution of naive B cell lineages, we expect little measurable evolution in the blood following 
vaccination. To test this, we applied the date randomization test to three longitudinally sampled adult 
influenza vaccine datasets. The first comprised three adults sampled seven times between 1 hr and 28 
days postvaccination (Gupta et al., 2017; Laserson et al., 2014); the second contained eight adults 
sampled five times between 0 and 90 days postvaccination (Ellebedy et al., 2016) the third used 
blood samples from a single individual sampled five times between 0 and 60 days postvaccination 
(Turner et al., 2020). Across subjects in each study, between only 2.9% and 5.2% of lineages were 
measurably evolving (Table 1). These values are approximately as expected under the null hypothesis 
of no measurable evolution, and histograms of p values from these datasets are roughly uniform, 
suggesting the measurably evolving lineages identified are mostly false positives from multiple 
testing (Figure 2—figure supplement 1). Distributions of p values for all datasets are also available 
in Figure 2—figure supplement 1. To verify the 4- to 13-week sampling range of these studies was 
sufficient to detect measurable evolution, we performed simulation analyses replicating the sampling 
strategy of the influenza dataset with the shortest sampling range (Figure 1—figure supplement 4; 
Laserson et al., 2014). These simulations show this timescale was sufficiently long to detect ongoing 
affinity maturation with high sensitivity (>90%, Figure  1H). Overall, these results indicate B cell 
lineages present in blood infrequently undergo additional evolution within 13 weeks following influ-
enza vaccination, consistent with a primarily GC-independent memory B cell response and/or rarity of 
antigen-specific lineages in the peripheral blood (Wrammert et al., 2008).

Measurably evolving lineages following influenza vaccination include 
memory B cell origin
While measurably evolving lineages do not occur at high frequency in the blood following influenza 
vaccination, we checked if any could be identified after adjustment for multiple testing. To adjust 
for multiple hypothesis tests, we pooled lineages across all studies and adjusted their p values using 
the Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995). We identified 15 lineages in 
influenza datasets, and 354 lineages in other conditions, with adjusted date randomization p values < 
0.1. We investigated if these ‘adjusted’ measurably evolving lineages were derived from naive or pre-
existing memory B cells. Because memory B cell lineages have already undergone affinity maturation, 
they are expected to have higher initial SHM levels compared to naive B cell lineages. To test this, 
we compared germline sequence divergence in adjusted measurably evolving lineages from influ-
enza vaccination to other conditions. Consistent with memory B cell reactivation, lineages from influ-
enza vaccination had significantly higher initial divergence (median = 8.6%) than those from primary 
responses such as early HIV infection (median = 5%, p = 0.0012) and primary hepatitis B vaccination 
(median = 2.8%, p = 0.0019) (Figure 2B). Further, these influenza lineages had initial divergence levels 
similar to lineages from subjects with HIV first sampled >5 years after infection (Huang et al., 2016; 
Wu et al., 2015), and hepatitis B booster vaccination subjects (Figure 2B; Galson et al., 2015b). 
Ebola virus infection, meningococcus vaccination, and early childhood development had median 
initial divergence levels of 0.4%, 6.6%, and 2.0%, respectively, but contained less than three adjusted 
measurably evolving lineages each. To understand the effect of multiple hypothesis correction on 
these results, we repeated the comparisons in Figure 2B using all measurably evolving lineages (unad-
justed p < 0.05) from the same datasets. Considering this larger set of lineages, initial divergence of 
lineages from influenza vaccination studies was significantly higher than those in all other conditions 
except late HIV infection (Figure 2—figure supplement 4). The same pattern from Figure 2B was 
also found when repeating these comparisons with a more strict cutoff (adjusted p < 0.05, Figure 2—
figure supplement 4). Overall, these results are consistent with measurably evolving lineages from 
influenza vaccination arising mainly from pre-existing memory B cells.

https://doi.org/10.7554/eLife.70873
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Measurably evolving lineages show signs of purifying selection
We next investigated the type and degree of selection operating on measurably evolving B cell 
lineages. One way to detect natural selection in DNA sequences is to estimate the ratio of nonsyn-
onymous (amino acid replacement) to synonymous (silent) mutation rates. This ratio is often called ω 
(Nielsen and Yang, 1998). Neutral evolution, where amino acid replacements are not selected for or 
against, should result in ω = 1. Purifying selection, where amino acid replacements are disfavored, 
should result in ω < 1. Diversifying selection, where amino acid replacements are favored, should 
result in ω > 1. In B cell lineages, ω is often estimated separately for complementarity-determining 
regions (CDRs) involved in antigen binding, and framework regions (FWRs), which are more struc-
tural. Further, it is important to estimate ω or similar metrics using models that account for intrinsic 
hot- and cold-spot biases of SHM (Hoehn et al., 2017; Uduman et al., 2011; Yaari et al., 2012). To 
understand what kind of selection operated on measurably evolving lineages, we estimated separate 
ω values for CDR and FWR regions (ωCDR and ωFWR) of the adjusted measurably evolving lineages 
(Figure 2B) using the HLP19 model in IgPhyML (Hoehn et al., 2019). Model parameters were shared 
among lineages within the same subject, and only subjects with at least two adjusted measurably 
evolving lineage were included to reduce noise. Across all conditions surveyed, we found evidence 
of purifying selection operating on adjusted measurably evolving lineages (mean ωCDR = 0.58, mean 
ωFWR = 0.48, Table 2). We estimated the significance of these results using a phylogenetic likelihood 
ratio test (Huelsenbeck and Rannala, 1997). We found that ωCDR was significantly <1 in 10/13 subjects 
(significantly >1 in none) and ωFWR was significantly <1 in 13/13 subjects (Table 2). This signal of puri-
fying selection was particularly strong in both early and late HIV. Influenza vaccination showed higher 
ω values, comparable to primary hepatitis B vaccination.

Influenza-binding lineages associated with GCs are measurably 
evolving
While we found little measurable evolution in the blood following seasonal influenza vaccination, 
influenza vaccination has been shown to stimulate both naive and memory B cells to enter GCs 
(Turner et al., 2020). This raises the possibility that additional affinity maturation could be occurring 
in GCs, but its products are not enriched in the blood. Data from Turner et al., 2020 provided both 
blood samples and fine-needle aspirations of lymph nodes (including GCs) from the same subject. By 
combining these samples, we identified 53 powered B cell lineages containing at least one GC B cell 
following influenza vaccination, and 100 powered lineages that contained none. We refer to lineages 
containing one or more GC B cells as ‘GC-associated’. To determine whether GC-associated lineages 
were undergoing additional SHM, we tested whether they were enriched for measurable evolution. 
We found that 7.5% of lineages containing sequences from GC B cells were measurably evolving, 
compared to only 3.0% of lineages with no identified GC sequences. This signal of measurable evolu-
tion increased with the fraction of GC sequences. For instance, while 10% of lineages containing 
≥10% GC sequences were measurably evolving, 38% (3/8) of those with ≥25% GC sequences were 
measurably evolving (Figure  3A). Lineages with higher proportions of GC sequences also had 
a higher correlation between divergence and time (linear regression slope = 1.1, p = 8.9 × 10−13, 
Figure 3—figure supplement 1). We further estimated the significance of this positive relationship 
by bootstrapping our data using 10,000 resampling repetitions with replacement. We found that in 
all 10,000 resampling repetitions, the slope of the linear regression between GC sequence propor-
tion and the correlation between divergence and time was positive, with 95% of repetitions having a 
slope between 0.81 and 1.3 (Figure 3—figure supplement 1). Measurably evolving lineages in this 
dataset did not contain significantly more sequences than other lineages, indicating these results were 
not significantly confounded by lineage size (Figure 3—figure supplement 2). Finally, the measur-
ably evolving lineages with the highest proportion of GC sequences contained mAbs that bound to 
vaccine antigens (Figure 3B, C). These lineages show signs of origin from memory B cells, such as 
clonal relatedness to blood plasmablasts sampled 5 days postvaccination, and high mean germline 
divergence at their first sampled timepoint (6.3%, 7.2%, Figure 3B, C, respectively). To test whether 
GC-associated lineages accumulated new amino acid replacement mutations rather than just silent 
mutations, we repeated the date randomization test but calculated the divergence of each tip as the 
number of amino acid differences between that tip’s sequence and the unmutated germline ancestor. 
This amino acid-based correlation analysis also showed a strong positive relationship between the 

https://doi.org/10.7554/eLife.70873
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Figure 3. Germinal center (GC) association is positively related to measurable evolution following influenza 
vaccination. (A) Percent of lineages that are measurably evolving given a minimum percentage of GC sequences. 
The minimum (inclusive) percent of GC sequences within a clone is shown on the x axis. The origin shows the 
percentage of measurably evolving lineages across all lineages. The left-most point shows lineages without any 
GC sequences. The total number of lineages in each category are listed above each point. The dashed line shows 
5%, the expected false positive rate under the null hypothesis. Results are shown for clustered date randomization 
tests using divergence values calculated either as the sum of nucleotide-based phylogenetic branch lengths 
(nucleotide), and the amino acid Hamming distance of each sequence to the germline (amino acid). (B, C) Lineage 
trees showing measurably evolving lineages with the highest proportion of GC sequences. Tips are labeled 
by cell type if available. ABC, activated B cell; GC, germinal center;  PB, plasmablast; RMB, resting memory B; 
and unlabeled tips are from bulk PBMC sequencing. mAb = influenza-binding monoclonal antibody sequence 
(2018/2019 quadrivalent inactivated influenza virus vaccine). Branch lengths represent somatic hypermutation 
(SHM)/site, as shown by the shared scale bar.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Germinal center (GC) engagement is positively related to measurable evolution following 
influenza vaccination.

Figure supplement 2. Number of sequences per lineage in measurably evolving vs nonmeasurably evolving 
lineages.

Figure supplement 3. Percent of lineages that are measurably evolving given a minimum percentage of germinal 
center (GC) sequences.
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proportion of lineages that were measurably evolving and the percentage of sequences derived from 
GC B cells (Figure 3A). This indicates that these GC-associated lineages accumulated new amino acid 
mutations as well as nucleotide mutations over the study interval. Overall, these analyses demon-
strate that influenza-binding, GC-associated B cell lineages undergo additional, measurable evolution 
following vaccination.

A possible alternative explanation for measurable evolution following influenza vaccination is that 
SHM is not occurring over the sampled time interval, but that highly mutated B cells were preferen-
tially recalled due to their higher binding affinity. Preferential recall of highly mutated B cells would 
likely result in a positive correlation between divergence and sample time. While difficult to directly 
test, we believe this explanation is unlikely to be the sole source of measurable evolution in our data. 
First, blood samples taken 5 days postvaccination represent the breadth of the pool of memory B 
cells. If measurable evolution was simply due to expansion of mutated memory B cells, we would 
expect divergence of later-sampled B cells to be within the range of day 5 plasmablasts. Instead, 
many later-sampled GC sequences are clearly more diverged than earlier-sampled sequences within 
the measurably evolving, influenza-binding lineages we observed (Figure 3B, C). Second, if measur-
able evolution were due simply to preferential expansion of more mutated B cells, we would expect 
to observe measurable evolution within influenza-binding lineages in both the blood and GC. This 
is not tested in Figure  3A because that analysis includes all lineages, not just those that bind to 
influenza. To adjust for this, we repeated the analysis in Figure 3A while only including lineages that 
contained influenza-binding mAbs. Even among influenza-binding lineages, we still observed an asso-
ciation between GC cells and measurable evolution. While 1/10 of influenza-binding lineages found 
only in the blood were measurably evolving, 2/5 lineages with >25% GC sequences were measurably 
evolving (Figure 3—figure supplement 3). Overall, while we cannot rule out preferential expansion 
of highly mutated memory B cells, these results are more easily interpretable as the result of ongoing 
SHM in GCs.

Discussion
The extent to which seasonal influenza vaccination stimulates affinity maturation against vaccine anti-
gens is unclear, and poor efficacy of seasonal influenza virus vaccination is often attributed to stimu-
lation of pre-existing memory B cells interfering with novel responses to vaccine antigens (Ellebedy, 
2018). While a prior study has shown that influenza-binding B cell lineages are found in GCs following 
seasonal influenza vaccination (Turner et  al., 2020), other work has suggested that circulating 
influenza-binding B cell lineages do not accumulate additional SHM following vaccination (Ellebedy 
et al., 2016). To determine whether seasonal influenza vaccination stimulates additional evolution 
in B cell lineages, we developed and validated a framework to detect measurable evolution using 
longitudinally sampled BCR sequencing data. This phylogenetic test can be a powerful tool to detect 
ongoing B cell evolution using longitudinally sampled BCR datasets across a wide array of immuno-
logical conditions, including influenza virus vaccine responses. Our results confirm prior findings that 
there is little evidence of B cell evolution among lineages sampled in the peripheral blood following 
seasonal influenza vaccination (Ellebedy et al., 2016). However, we also show that seasonal influenza 
vaccination is capable of stimulating measurable evolution in influenza-binding, GC-associated B cell 
lineages.

To place our analyses of the influenza vaccination response in a broader context, we surveyed 
measurable evolution across a broad range of infections and vaccinations. Prior work has shown that 
chronic HIV infection induces long-term affinity maturation of broadly neutralizing antibody lineages in 
response to viral escape mutants (Liao et al., 2013; Vieira et al., 2018; Wu et al., 2015). Our results 
show that HIV infection is associated with an exceptionally strong signature of B cell evolution over 
time. This signature is not limited to single lineages. Rather, a substantial fraction of longitudinally 
sampled B cell lineages within the repertoires of subjects with HIV are measurably evolving, consistent 
with clonal competition among B cell lineages during HIV infection (Nourmohammad et al., 2019). 
Early childhood development during the first 3 years of life (Nielsen et al., 2019) showed the second-
highest enrichment of measurably evolving lineages among surveyed conditions. This possibly reflects 
continual exposure to novel antigens during childhood. Further, primary vaccinations (meningococcus, 
primary hepatitis B)(Galson et al., 2016; Galson et al., 2015a) showed stronger signatures of measur-
able evolution than secondary vaccinations (adult seasonal influenza, hepatitis B booster) (Ellebedy 
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et al., 2016; Galson et al., 2015b; Laserson et al., 2014; Turner et al., 2020). Overall, our results are 
consistent with the hypothesis that GC responses are stronger in response to novel antigens.

In addition to detecting measurable evolution, we also characterized selection operating on 
measurably evolving B cell lineages. We found that measurably evolving lineages showed evidence of 
purifying selection (ωCDR < 1) (Table 2). Though perhaps counterintuitive, a strong signal of purifying 
selection is a straightforward prediction of evolution toward an adaptive peak (Hoehn et al., 2019). 
Similar evidence of purifying selection during affinity maturation has been observed in other studies 
including influenza vaccination, HIV infection, and healthy controls (Cizmeci et  al., 2021; Hoehn 
et al., 2019; Sheng et al., 2016; Yaari et al., 2015). Importantly, ω estimates are an average across 
all codons within CDRs or FWRs. It is possible that positive selection operated on a small number of 
codon sites, but that this signal was outweighed by the larger number of sites under purifying selec-
tion. Codon-specific models may be useful in future analyses to identify these sites under positive 
selection (e.g., Yang et al., 2000). When interpreting these results, it is also important to note that 
parameters were estimated using all mutations represented by each lineage tree, including those that 
potentially occurred before the first sampled timepoint. In all, these results are consistent with typical 
forces of selection having operated on measurably evolving lineages.

There are several limitations to this study. Data from different studies were sampled according to 
different schedules and time intervals. Because the power to detect measurable evolution should 
increase over time (Figure 1G), this could confound comparisons among datasets. We note however 
that multiple influenza and HIV datasets were surveyed, and enrichment of measurable evolution 
within these conditions was not strongly related to the sampling range (Figure 2A). This suggests 
immunological condition, rather than sample range, was the primary determinant of observed differ-
ences. By including monoclonal antibody (mAb) sequences with experimentally validated binding 
in several datasets, we were able to show that measurably evolving lineages are more likely than 
nonmeasurably evolving lineages to contain mAb sequences. This is consistent with the idea that 
measurably evolving lineages are actively responding to antigen. These results should be interpreted 
cautiously, however. With the exception of Turner et al., 2020 only a small number mAb sequences 
were found in the lineages analyzed (mean = 3.6 per study). Further, lineages containing GC sequences 
were preferentially selected for mAb generation in Turner et al., 2020, which may artificially increase 
the likelihood that measurably evolving lineages contain mAbs. While intriguing and biologically plau-
sible, conclusively determining whether measurable evolution predicts antigen binding is beyond the 
scope of this study. Another limitation is that maximum parsimony was used to estimate lineage tree 
topologies and branch lengths. While more sophisticated methods are available for inferring B cell 
lineage trees (e.g., Hoehn et al., 2019), maximum parsimony often has competitive performance for 
topology estimation (Davidsen and Matsen, 2018) and is faster than more complex maximum likeli-
hood models designed for B cell lineages. Computational efficiency was particularly important as our 
analyses required constructing more than 20,000 lineages trees spanning approximately 1,100,000 
BCR sequences. Finally, our analysis of GC-associated B cell lineages was limited to data sampled 
from a single subject. Thus, while the results here demonstrate that influenza vaccination is capable 
of inducing measurable evolution, it remains unclear whether this is a general feature of influenza 
vaccination.

Our analyses of measurable evolution involved a series of hypothesis tests, and the definition for 
‘enrichment’ of measurable evolution (>5% of lineages) was chosen based on the expected false 
positive rate under the null hypothesis. This enrichment measure was chosen to compare the relative 
frequency of measurably evolving lineages among datasets. A lack of enrichment does not indicate a 
complete lack of measurably evolving lineages. Conversely, slight enrichment of measurably evolving 
lineages (~5%) should not be interpreted as proof of ongoing affinity maturation in a set of lineages. 
The analysis in Figure 2A was not intended to test the null hypothesis that no lineages are measur-
ably evolving in a particular dataset. Because multiple studies were surveyed (Table 1), it is possible 
our results contain false positives. Indeed, while some conditions such as HIV have a strong signal 
of measurable evolution across multiple studies, others such as naive hepatitis B vaccination and 
allergen-specific immunotherapy are just above the significance threshold (≤7.2% lineages with p < 
0.05) and are each represented by a single study (Figure 2A, Table 1). These latter datasets should 
be interpreted cautiously and with the understanding that the vast majority of their lineages were 
not measurably evolving. To limit the influence of false positives, a multiple testing correction (false 
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discovery rate < 0.1) was performed in analyses investigating the properties of measurably evolving 
lineages (Figure 2B, Table 2). We note, however, that repeating our analyses of initial germline diver-
gence using all measurably evolving lineages (unadjusted p < 0.05) or a more strict p value cutoff 
(adjusted p < 0.05) yielded similar results (Figure 2—figure supplement 4), indicating our results are 
robust to the thresholds used. Finally, we validated the specificity of the date randomization test in 
empirical data (Figure 1—figure supplement 2). While a significant decrease in divergence over time 
is biologically unlikely, false positives due to multiple testing or sequencing error should produce a 
similar number of lineages with a significant correlation in either direction. We quantified correlation 
in either direction using a two-tailed version of the clustered, resolved date randomization test with 
a critical value of 0.025 (see Methods). Under a null hypothesis of no ongoing evolution, 2.5% of 
lineages were expected to have a significant negative correlation between divergence and time (all 
false positives). However, we found such ‘negatively evolving’ lineages at a mean frequency of only 
1.2% (median = 1.3%, range = 0–2.8%) across all datasets when using clustered permutations and 
resolved polytomies (Figure 1—figure supplement 2). This indicates the date randomization test we 
used is conservative, and that our chosen thresholds are likely more strict than necessary.

Beyond multiple testing, there are some biological scenarios that could plausibly give rise to a 
signal of measurable evolution without additional SHM occurring during the sampling interval. For 
instance, it is possible that all SHM within a lineage occurred before the first sampled timepoint in 
a study, but that more mutated, higher-affinity BCRs were preferentially stimulated and sampled in 
later timepoints. Such a scenario would likely result in a positive correlation between divergence and 
sample time. However, our results are easier to explain if measurable B cell evolution results at least in 
part from ongoing SHM. For instance, our analysis of measurably evolving lineages following influenza 
vaccination showed (1) many later-sampled GC B cells had higher divergence than any sampled day 
5 plasmablast sequence in the same lineage and (2) continued association between GC cells (rather 
than the blood) and measurable evolution even among influenza-binding lineages. Nonetheless, it is 
still theoretically possible that more mutated B cells were not sampled at early timepoints, and were 
preferentially expanded in GCs compared to the peripheral blood. Thus, while our interpretation is 
that measurable B cell evolution most likely represents an ongoing SHM process, we cannot conclu-
sively rule out biased selection of more mutated sequences that were generated before the sampling 
interval.

Affinity maturation is a rapid evolutionary process. It is perhaps surprising that, while we identified 
conditions enriched for measurably evolving lineages, most lineages in circulation were not measur-
ably evolving (Table 1). One explanation is that our analyses did not use sufficiently long sampling 
intervals to detect affinity maturation, though we believe this is unlikely. Studies in mice have esti-
mated that SHM occurs at ~10−3 SHM/bp/division (Kleinstein et al., 2003; McKean et al., 1984), and 
that GC B cells cycle every 6–12 hr (Allen et al., 2007; Hauser et al., 2007; Victora and Nussenz-
weig, 2012). Simulations using conservative assumptions (strong selection, 24-hr cell cycle) and repli-
cating the sample structure of our shortest-term influenza dataset (4 weeks), showed high power with 
>90% true positive rate (Figure 1H). Further, we found an enrichment of blood-derived measurably 
evolving lineages after only 4 weeks in one study (Galson et al., 2015a), and after 8 weeks corre-
sponding to a known context of affinity maturation (GC entry, Figure 3). Overall, these results show 
that the sample times of our surveyed datasets should be sufficient to detect ongoing B cell evolution 
if it were occurring. However, it is possible that lineages may not remain in GCs continuously, which 
would slow the rate of evolution compared to our simulations. A more plausible explanation for the 
lack of measurable evolution is that most lineages in the blood are either nonspecific to the condi-
tion being studied, or derive from a GC-independent response (Mesin et al., 2020; Takemori et al., 
2014; Taylor et al., 2012). It is also possible that lineages relevant to the condition being studied are 
inefficiently stimulated.

We find that seasonal influenza virus vaccination in young adults induces a GC reaction where matu-
ration of vaccine-specific B cell lineages occurs, including those likely recruited from the pre-existing 
memory B cell compartment. These results imply that poor efficacy of seasonal influenza vaccination 
does not result from a complete lack of vaccine-induced B cell evolution. While we showed that B 
cells in these evolving lineages increased in amino acid replacement mutation frequency, it remains 
possible that this evolution is less able to select affinity-increasing mutations (Hoehn et al., 2019), 
that the overall number of evolving lineages is reduced, or that the products of this vaccine-induced 
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evolution are not efficiently translated into memory and long-lived plasma cells. These latter two 
explanations are consistent with the results of our survey of longitudinally sampled peripheral blood 
datasets, which found an enrichment of measurably evolving lineages in some primary immune 
response conditions, but not influenza vaccination. Future studies will be needed to fully test these 
hypotheses about the causes of poor efficacy of seasonal influenza vaccination.

Materials and methods
Study design
The goal of this study was to determine whether B cell lineages found in GCs following influenza 
vaccination evolved over a given sample interval. This necessitated describing and validating a test 
for measurable evolution from longitudinally sampled BCR sequencing data. Simulation-based power 
analyses determined that this date randomization test has sufficient sensitivity to detect evolving B 
cell populations over a sampling interval of approximately 2 weeks. To determine whether the date 
randomization test also worked on known examples of affinity maturation, all longitudinally sampled 
datasets hosted on OAS (as of 6/2020) were downloaded and tested. To cover as wide a variety of 
conditions as possible, these datasets were supplemented with processed, publicly available datasets 
from other prior studies. To ensure datasets were appropriately powered, datasets were only included 
if they contained at least 10 B cell lineages with at least 15 sequences sampled over 3 weeks and a 
minimum possible date randomization test p value <0.05. BCR data from blood and fine-needle aspi-
rations following influenza vaccination were obtained from Turner et al., 2020.

BCR sequence datasets and preprocessing
All longitudinally sampled BCR repertoire datasets were publicly available and obtained both from 
primary publications and through the OAS database (antibodymap.org, accessed 6/2020; Kovaltsuk 
et al., 2018). Both assembled nucleotide sequences and deduplicated amino acid sequences were 
obtained from OAS. To reduce the effect of sequencing error in OAS datasets, only nucleotide 
sequences corresponding to an amino acid sequence with a multiplicity of at least two were included. 
Datasets obtained from OAS are labeled in Table 1. Raw sequence data obtained from Nielsen et al., 
2019 were preprocessed with pRESTO v0.5.13 (Vander Heiden et al., 2014). Quality control was 
performed by first removing all sequences with a Phred quality score <20, length <300 bp, or any 
missing (‘N’) nucleotides. The 3′ and 5′ ends of each read were matched to forward and constant 
region primers with a maximum error rate of 0.1. The region adjacent to the constant region primer 
was exactly matched to subisotype-specific internal constant region sequences. Only sequences with 
the same isotype predicted by their constant region primer and internal constant region sequence 
were retained. Identical reads within the same isotype were collapsed and sequences observed only 
once were discarded. All other datasets used processed BCR sequence data provided by the authors 
of their respective publications. Data from Wang et al., 2014 were processed in Hoehn et al., 2019. 
Data from Jiang et al., 2020b used only blood samples.

BCR sequence processing, genotyping, and clonal clustering
Datasets were processed using the Immcantation framework (immcantation.org). V(D)J gene assign-
ment on data obtained from Nielsen et al., 2019 was performed using IgBLAST v1.13 (Ye et al., 
2013) against the IMGT human germline reference database (Giudicelli et al., 2005) (IMGT/GENE-DB 
v3.1.24; retrieved August 3, 2019). V(D)J gene assignments and clonal cluster assignments were already 
available in all other non-OAS datasets and were retained. Nonproductively rearranged sequences 
were excluded. Using Change-O v1.0.0 (Gupta et al., 2015), the V and J genes of unmutated germ-
line ancestors for each sequence were constructed with D segment and N/P regions masked by ‘N’ 
nucleotides. Sequence chimeras were filtered by removing any sequence with more than six mutations 
in any 10 nucleotide window. Individual immunoglobulin genotypes were computationally inferred 
using TIgGER v1.0.0 and used to finalize V(D)J annotations (Gadala-Maria et al., 2015). To infer clonal 
clusters, sequences were first partitioned based on common V and J gene annotations, and junction 
region length. Within these groups, sequences differing from one another by a specified Hamming 
distance threshold within the junction region were clustered into clones using single linkage hierar-
chical clustering (Gupta et al., 2017). The Hamming distance threshold was determined by finding 
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the local minimum of a bimodal distance to nearest sequence neighbor plot using SHazaM v1.0.2.999 
(Yaari et al., 2013). In cases where automated threshold detection failed, usually because the distance 
to nearest neighbor distribution was not bimodal, the threshold was set to 0.1 and verified by manual 
inspection to ensure that a threshold of 0.1 was near a local minimum. Finally, the V and J genes of 
unmutated germline ancestors for each clone were constructed. Within these unmutated ancestral 
sequences, D segments and N/P regions were masked using ambiguous ‘N’ nucleotides.

Testing for measurable evolution
Testing for measurable evolution begins with building B cell lineage trees. Within each B cell clone, 
identical sequences or those differing only by ambiguous nucleotides were collapsed unless they 
were sampled at different timepoints. To reduce computational complexity, lineages were randomly 
down-sampled to at most 500 sequences each. B cell lineage tree topologies and branch lengths 
were estimated using maximum parsimony using the pratchet function of the R package phangorn 
v2.5.5 (Schliep, 2011). R packages dowser v0.0.3 (Hoehn et al., 2020), alakazam v1.0.2.999 (Gupta 
et al., 2015), and ape v5.4-1 (Paradis et al., 2004) were used for phylogenetic analysis. Trees were 
visualized using ggtree v2.4.2 (Yu et al., 2016), and other figures were generated using ggplot2 v3.3.5 
(Wickham, 2016) and ggpubr v0.4.0 (Kassambara, 2020). R v3.6.1 (R Development Core Team, 
2017) was used for analysis of measurable evolution except for data from Davis et al., 2019. Due to 
technical upgrades, figure generation and selection analysis were performed using R v4.0.3, as well as 
ape v5.5, phangorn v2.7.1, shazam v1.1.0, alakazam v1.1.0, and dowser v0.1.0. Data from Davis et al., 
2019 were also analyzed using these updated packages.

To test for measurable evolution over time, we use a modified version of the previously described 
phylogenetic date randomization test (Duchêne et al., 2015; Murray et al., 2016) implemented in 
dowser v0.0.3 (Hoehn et al., 2020). Briefly, for a given tree the divergence of each tip was calcu-
lated as the sum of branch lengths leading to the tree’s most recent common ancestor (MRCA). Only 
branches directly between a tip and the tree’s most recent common ancestor were used to calculate 
divergence. We next calculated the Pearson’s correlation between the divergence and sampling time 
of each tip. Measurably evolving lineages should show a positive correlation between divergence and 
time (Figure 1A). Divergence from the lineage’s predicted unmutated ancestral sequence rather than 
the MRCA could also be used. Because all sequences relate to the unmutated ancestral sequence 
through the MRCA node, this would add a constant additional divergence to all sequences, resulting 
in the same correlation as when the MRCA is used. We next identified monophyletic clades containing 
only sequences from a single timepoint (here referred to as ‘clusters’). We then randomly permuted 
sampling times among clusters, such that all sequences within each cluster had the same, randomly 
chosen timepoint. We next measured the correlation between divergence and time in this random-
ized tree, and repeated the process 100,000 times. We then estimated the p value that the observed 
correlation between divergence and time was no greater than expected from random distribution of 
times among clusters. This p value was calculated as the proportion of permutation replicates that 
had an equal or higher correlation than in the observed tree. We used a pseudocount of one for this 
calculation. The minimum possible p value for a lineage was calculated as one divided by possible 
number of distinct cluster permutations.

We modified the date randomization test to account for the high degree of topological uncertainty 
of many B cell lineage trees. More specifically, B cell lineage trees often contain large clusters of zero-
length branches (soft polytomies) that represent high uncertainty in branching order (e.g., Figure 1—
figure supplement 1). In bulk BCR data, these polytomies may be due to PCR error or sequencing 
error. If polytomies are resolved randomly into bifurcations, this can produce more single-timepoint 
monophyletic clades than necessary and lead to a high false positive rate of the date randomization 
test (Figure 1—figure supplements 1 and 2). To ensure this source of uncertainty did not increase the 
false positive rate of our analyses, we resolved bifurcations within each polytomy such that sequences 
from the same timepoint were grouped into the fewest possible number of single-timepoint mono-
phyletic clades before performing permutations. While we do not have direct evidence that polyto-
mies in B cell lineages trees are produced from PCR error, the fact that resolving them reduces the 
rate of lineages with a significant negative correlation between divergence and time (a biologically 
implausible result, Figure 1—figure supplement 2) suggests they are at least in part due to technical 
artifacts.
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The clustered date randomization approach is more conservative than tests that permute tips 
uniformly (e.g., Unterman et al., 2020), but has been shown to be less biased if different subpopu-
lations are sampled at each timepoint (Murray et al., 2016). To explore the effect of this modeling 
choice, we repeated the analyses in Table 1 using two-tailed clustered and uniform date randomiza-
tion tests (Figure 1—figure supplement 2). Two-tailed tests can identify lineages with a significant 
positive or negative correlation between divergence and time. This is useful because a significant 
negative correlation between divergence and time is biologically implausible and represents a likely 
false positive result. Due to multiple testing under an alpha value of 0.025, we expect no more than 
2.5% of lineages to have a significant negative correlation from these two-tailed tests. We found the 
uniform permutation test had a high rate of negatively evolving lineages (mean = 8.3%), indicating a 
high false positive rate. By contrast, the clustered permutation test without resolved polytomies had 
a mean rate of only 2.2% negatively evolving lineages, approximately as expected given an alpha 
value of 0.025. Resolving polytomies and then performing the clustered permutation test improved 
performance even more, with a mean rate of 1.2% negatively evolving lineages and no dataset having 
more than 2.8% of lineages negatively evolving. This analysis shows the uniform date randomization 
test is prone to false positives in empirical B cell data, while the clustered date randomization test 
with resolved polytomies corrects this issue. All other tests performed in this study used a one-tailed, 
clustered date randomization test with resolved polytomies and an alpha value of 0.05.

To identify and characterize measurably evolving lineages while adjusting for multiple testing, all 
lineages tested were pooled together and p values were adjusted using the Benjamini–Hochberg 
procedure (Benjamini and Hochberg, 1995) implemented in the function p.adjust (R Development 
Core Team, 2017). Lineages with adjusted p values <0.1 were referred to as adjusted measurably 
evolving lineages (Figure 2B). To determine whether lineages were measurably increasing in amino 
acid divergence (Figure  3A), we repeated the clustered date randomization test for each tree. 
However, instead of calculating divergence as the sum of phylogenetic branch lengths leading from 
each tip to the most recent common ancestor of the lineage, we calculated divergence as the number 
of nonambiguous amino acid differences between each tip and the lineage’s clonal germline. The 
clustered permutation test then proceeded as before, using the same cluster assignments as in the 
nucleotide-based test. This tested whether sequences at later timepoints had more amino acid substi-
tutions compared to the germline than sequences at earlier timepoints.

It is possible that the results reported are affected by the size (number of sequences) of lineages 
in each dataset. A large number of lineages without adequate power could result in a spurious lack 
of measurable evolution. To ensure the lineages included in each study were adequately powered, 
we included only lineages with at least 15 sequences, that were sampled over at least 3 weeks, and 
had a minimum possible p value <0.05 based on the number of distinct permutations of timepoints 
among clusters. If measurable evolution were still strongly confounded by lineage size even after 
these filtering steps, we would expect measurably evolving lineages to be larger on average than 
nonmeasurably evolving lineages. By contrast, measurably evolving lineages were significantly larger 
than nonmeasurably evolving lineages in only 5/21 datasets surveyed (Figure 3—figure supplement 
2), indicating our results are not strongly confounded by lineage size.

Inclusion of experimentally validated mAbs
To identify B cell lineages that likely bind to the antigen under study, we included experimentally 
validated monoclonal antibody (mAb) heavy chain sequences provided from multiple studies. This 
included multiple anti-HIV mAbs: 11 from Liao et al., 2013, 12 from Doria-Rose et al., 2014, 7 from 
Johnson et al., 2018, 42 from Landais et al., 2017, 31 from Wu et al., 2015, and 4 from Huang 
et al., 2016. Doria-Rose et al., 2014 and Wu et al., 2015 also provided 680 and 1033 bulk BCR 
sequences, respectively, identified as clonally related to the provided anti-HIV broadly neutralizing 
mAbs. These sequences were also included in processing and clonal clustering but were not labeled 
as experimentally validated mAbs. Davis et  al., 2019 provided 885 mAb heavy chain sequences, 
some of which were tested for binding against Ebola virus proteins. All of these sequences were 
included in processing and clonal clustering, but only 368 validated by ELISA to bind to Ebola virus 
were labeled as EBV-binding mAbs. All of the above sequences were processed in the same manner 
as bulk sequences from OAS, except they were not filtered as potential PCR chimeras. Clonal lineages 
containing experimentally validated mAbs were labeled as antigen-binding; however, because sample 
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timepoints were not always apparent, mAb sequences themselves were removed before lineage tree 
inference for the abovementioned studies. Processed data from Turner et al., 2020 also included 196 
anti-influenza mAbs. These sequences were retained during tree inference because they were explic-
itly labeled by timepoint and usually cloned from previously identified sequences within the data. 
Of all mAbs included, only the 58 clonally clustered within powered lineages (at least 15 sequences 
sampled over 3 weeks, and minimum p value <0.05) were included in tests of mAb enrichment 
(Figure 2—figure supplement 3).

Simulation-based power analysis
We used simulations to determine whether the clustered date randomization test was sufficiently 
powered to detect ongoing B cell evolution. These analyses used the bcr-phylo package accessed 
9/21/2020 (Davidsen and Matsen, 2018; Ralph and Matsen, 2020), which simulates clonal lineages 
of B cells undergoing affinity maturation against a target sequence. For all simulations, a random 
naive heavy chain sequence was chosen from those provided in bcr-phylo and the rate of SHM was 
set to the default of λ = 0.356, which corresponds to an SHM rate of ~0.001 SHM/site/division (Teng 
and Papavasiliou, 2007). Mutations were introduced according to the S5F model (Yaari et al., 2013). 
Selection strength was chosen to be either 0 (neutral) or 1 (entirely affinity driven). A single target 
sequence was chosen for affinity maturation. All other parameters were set to their default.

We performed two sets of simulations. In the first, we simulated single B cell lineages from which 
50 cells were sampled at generation 10, and 50 more cells were sampled after a specified number of 
additional generations (Figure 1G, Figure 1—figure supplement 3). In the second type of simula-
tion, we replicated the sampling strategy of Laserson et al., 2014. Briefly, for each clone in subject 
hu420143 from Laserson et al., 2014, we simulated one lineage with the same number of cells (if 
enough cells had been generated) sampled after the number of generations corresponding to 1, 3, 
7, 14, 21, and 28 days (Figure 1—figure supplement 4). The number of generations corresponding 
to each sample day was calculated using a strict generation time of either 12 or 24 hr, which are 
conservative given previous GC cycle estimates of 6–12 hr (Allen et al., 2007; Hauser et al., 2007; 
Victora and Nussenzweig, 2012). These simulations used a selection strength of 1, which gave more 
conservative results in previous simulations (Figure 1—figure supplement 3).

To account for possible issues with clonal clustering, we did not preserve clonal identities among 
simulated sequences in either simulation type. Instead, we pooled sequences from all simulation repe-
titions under a particular parameter set and used the same clonal clustering method used for empir-
ical data analyses to group them into clonal clusters. We did not repeat the genotyping or chimera 
filtering steps done on empirical data analyses as genotyped individuals and sequence chimeras were 
not part of the simulations. We performed the clustered date randomization test with resolved poly-
tomies on each lineage with a minimum possible p value <0.05. Because all sequences were simulated 
under affinity maturation, the proportion of lineages with p < 0.05 indicated the true positive rate of 
the test. To determine the false positive rate, we randomized sample times among tips within each 
tree and repeated the date randomization test (Figure 1—figure supplements 3 and 4). Here, the 
proportion with p < 0.05 indicated the false positive rate.

Analysis of selection
To understand the force of selection operating on B cell lineages, we first separated all adjusted 
measurably evolving lineages into their respective subjects within each study. We then excluded all 
subjects with only one measurably evolving lineage. While all sequences included were labeled as 
productive by IgBlast, three contained premature stop codons in their IMGT-aligned sequences, likely 
due to insertions that were removed during alignment. These sequences were removed. For compu-
tational efficiency, all lineages were down-sampled to a maximum size of 100 sequences. Due to 
uncertainty in germline D-region assignment, only V-gene (IMGT positions 1–312) nucleotides were 
included for analyses of selection, similar to Hoehn et  al., 2017. We then estimated lineage tree 
topologies, branch lengths, and subject-wide substitution model parameters under the GY94 model 
(Hoehn et al., 2019; Nielsen and Yang, 1998). Using fixed tree topologies estimated from the GY94 
model, we then estimated branch lengths, subject-wide ω values for CDR and FWR partitions (ωCDR 
and ωFWR), and all six canonical SHM hot- and cold-spot motif parameters under the HLP19 model in 
IgPhyML v1.1.3 (Hoehn et al., 2019) for all adjusted measurably evolving lineages. Significance of ω 
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estimates was determined using two phylogenetic likelihood ratio tests, similar to Hoehn et al., 2017. 
To determine the significance of ωCDR estimates, we compared the maximum log-likelihood obtained 
when both ωCDR and ωFWR were estimated by maximum likelihood (L) to that obtained when ωFWR was 
estimated by maximum likelihood but ωCDR was fixed at 1 (LCDR=1). The likelihood ratio statistic (LRS) for 
this test was calculated as 2×(L – LCDR=1). Because these models differ by one freely estimated param-
eter, the LRS will be approximately chi-squared distributed with one degree of freedom under the null 
hypothesis that ωCDR = 1, which allows for p value calculation (Huelsenbeck and Rannala, 1997). To 
determine significance of ωFWR estimates, the process is the same except LRS = 2×(L – LFWR=1), where 
LFWR=1 is the maximum log-likelihood obtained when ωCDR was estimated by maximum likelihood but 
ωFWR was fixed at 1 (LFWR=1). All of the above statistics are reported in Table 2.

 

Data and material availability
All data are publically available from prior publications. Script to reproduce all analyses performed 
are available at https://bitbucket.org/kleinstein/projects.git (Kleinstein Lab, 2021; copy archived at 
swh:1:rev:1ca83cda5d1baac880c71c314b0adc359314f6fa).
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