9,693 research outputs found

    A Historical Analysis of Non-Normative Embodiment Through the Lens of Frankenstein’s Creature

    Get PDF
    A trend to historicize the field of Disability Studies has emerged in recent years. However, little research has been done to place different societies and generations in conversation with one another. This thesis will utilize various adaptations of Mary Shelley’s Frankenstein in order to explore shifting anxieties concerning non-normative embodiment through the vessel of the Creature. I examine the Creature’s changing physical form next to scientific and medical literature of the period to explore connotations of disability and otherness within that society. I consider the manifestation of anxieties towards non-normative embodiment through Mary Shelley’s 1831 Frankenstein, James Whale’s 1931 film Frankenstein, and Victor LaValle’s 2018 graphic novel Destroyer; the frequent reworking of Frankenstein’s Creature allows for an examination of shifting and persistent anxieties concerning non-normative embodiment over time

    Wiring the Writing Center

    Get PDF
    As computers have brought important developments to composition studies, writing centers have found themselves creating and improvising applications for their own work and often for the writing programs and institutions in which they live. Online tutorials, websites with an array of downloadable resources for students, scheduling and email possibilities--all of these are becoming common-place among writing centers across the country. However, in spite of impressive work by individual centers, exchange on these topics between and among writing centers has been sporadic. As more writing centers approach getting wired and others continue to upgrade, the need for communication and collaboration becomes ever more obvious, and so does the need to understand theoretical implications of choices made.https://digitalcommons.usu.edu/usupress_pubs/1122/thumbnail.jp

    The joint law of the extrema, final value and signature of a stopped random walk

    Full text link
    A complete characterization of the possible joint distributions of the maximum and terminal value of uniformly integrable martingale has been known for some time, and the aim of this paper is to establish a similar characterization for continuous martingales of the joint law of the minimum, final value, and maximum, along with the direction of the final excursion. We solve this problem completely for the discrete analogue, that of a simple symmetric random walk stopped at some almost-surely finite stopping time. This characterization leads to robust hedging strategies for derivatives whose value depends on the maximum, minimum and final values of the underlying asset

    Modal decomposition of astronomical images with application to shapelets

    Full text link
    The decomposition of an image into a linear combination of digitised basis functions is an everyday task in astronomy. A general method is presented for performing such a decomposition optimally into an arbitrary set of digitised basis functions, which may be linearly dependent, non-orthogonal and incomplete. It is shown that such circumstances may result even from the digitisation of continuous basis functions that are orthogonal and complete. In particular, digitised shapelet basis functions are investigated and are shown to suffer from such difficulties. As a result the standard method of performing shapelet analysis produces unnecessarily inaccurate decompositions. The optimal method presented here is shown to yield more accurate decompositions in all cases.Comment: 12 pages, 17 figures, submitted to MNRA

    Sommerfeld's image method in the calculation of van der Waals forces

    Full text link
    We show how the image method can be used together with a recent method developed by C. Eberlein and R. Zietal to obtain the dispersive van der Waals interaction between an atom and a perfectly conducting surface of arbitrary shape. We discuss in detail the case of an atom and a semi- infinite conducting plane. In order to employ the above procedure to this problem it is necessary to use the ingenious image method introduced by Sommerfeld more than one century ago, which is a generalization of the standard procedure. Finally, we briefly discuss other interesting situations that can also be treated by the joint use of Sommerfeld's image technique and Eberlein-Zietal method.Comment: To appear in the proceedings of Conference on Quantum Field Theory under the Influence of External Conditions (QFEXT11

    Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory

    Full text link
    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this article, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical---ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the "barrier to entry" by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?Comment: 25 pages, 3 figure

    Alternative Fourier Expansions for Inverse Square Law Forces

    Get PDF
    Few-body problems involving Coulomb or gravitational interactions between pairs of particles, whether in classical or quantum physics, are generally handled through a standard multipole expansion of the two-body potentials. We discuss an alternative based on a compact, cylindrical Green's function expansion that should have wide applicability throughout physics. Two-electron "direct" and "exchange" integrals in many-electron quantum systems are evaluated to illustrate the procedure which is more compact than the standard one using Wigner coefficients and Slater integrals.Comment: 10 pages, latex/Revtex4, 1 figure
    • …
    corecore