70 research outputs found

    Carbon dioxide baited trap catches do not correlate with human landing collections of Anopheles aquasalis in Suriname

    Get PDF
    Three types of carbon dioxide-baited traps, i.e., the Centers for Disease Control Miniature Light Trap without light, the BioGents (BG) Sentinel Mosquito Trap (BG-Sentinel) and the Mosquito Magnet® Liberty Plus were compared with human landing collections in their efficiency in collecting Anopheles (Nyssorhynchus) aquasalis mosquitoes. Of 13,549 total mosquitoes collected, 1,019 (7.52%) were An. aquasalis. Large numbers of Culex spp were also collected, in particular with the (BG-Sentinel). The majority of An. aquasalis (83.8%) were collected by the human landing collection (HLC). None of the trap catches correlated with HLC in the number of An. aquasalis captured over time. The high efficiency of the HLC method indicates that this malaria vector was anthropophilic at this site, especially as carbon dioxide was insufficiently attractive as stand-alone bait. Traps using carbon dioxide in combination with human odorants may provide better results

    Evaluation of Methods for Sampling the Malaria Vector Anopheles darlingi (Diptera, Culicidae) in Suriname and the Relation With Its Biting Behavior

    Get PDF
    The effectiveness of CO2-baited and human-baited mosquito traps for the sampling of Anopheles darlingi Root was evaluated and compared with human landing collections in Suriname. Biting preferences of this mosquito on a human host were studied and related to trapping data. Traps used were the Centers for Disease Control and Prevention Miniature Light trap, the BG Sentinel mosquito trap, the Mosquito Magnet Liberty Plus mosquito trap (MM-Plus), and a custom-designed trap. Carbon dioxide and humans protected by a bed net were used as bait in the studies. The number of An. darlingi collected was greater with human landing collections than with all other collection methods. An. darlingi did not show a preference for protected humans over CO2 bait. The BG Sentinel mosquito trap with CO2 or human odor as bait and the MM-Plus proved the best alternative sampling tools for An. darlingi. The BG Sentinel mosquito trap with CO2 or human odor as bait was also very efficient at collecting Culex spp. In a field study on biting preferences of wild An. darlingi, the females showed directional biting behavior (P <0.001), with a majority of females (93.3%) biting the lower legs and feet when approaching a seated human host. Higher efficiency of the closer-to-the-ground collecting MM-Plus and BG Sentinel mosquito trap when compared with the other trapping methods may be a result of a possible preference of this mosquito species for low-level biting. It is concluded that odor-baited sampling systems can reliably collect An. darlingi, but the odor bait needs to be improved, for instance, by including host-specific volatiles, to match live human baits

    Novel strategies lead to pre-elimination of malaria in previously high-risk areas in Suriname, South America

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suriname was a high malaria risk country before the introduction of a new five-year malaria control program in 2005, the Medical Mission Malaria Programme (MM-MP). Malaria was endemic in the forested interior, where especially the stabile village communities were affected.</p> <p>Case description</p> <p>The interventions of the MM-MP included new strategies for prevention, vector control, case management, behavioral change communication (BCC)/information, education and communication (IEC), and strengthening of the health system (surveillance, monitoring and evaluation and epidemic detection system). After a slow first year with non-satisfying scores for the performance indicators, the MM-MP truly engaged in its intervention activities in 2006 and kept its performance up until the end of 2009. A total of 69,994 long-lasting insecticide-treated nets were distributed and more than 15,000 nets re-impregnated. In high-risk areas, this was complemented with residual spraying of insecticides. Over 10,000 people were screened with active case detection in outbreak and high-risk areas. Additional notification points were established and the national health system was strengthened.</p> <p>Discussion and evaluation</p> <p>In the current paper, the MM-MP is evaluated both on account of the targets established within the programme and on account of its impact on the malaria situation in Suriname. Malaria vector populations, monitored in sentinel sites, collapsed after 2006 and concurrently the number of national malaria cases decreased from 8,618 in 2005 to 1,509 in 2009. Malaria transmission risk shifted from the stabile village communities to the mobile gold mining communities, especially those along the French Guiana border.</p> <p>Conclusions</p> <p>The novel strategies for malaria control introduced in Suriname within the MM-MP have led to a significant decrease in the national malaria burden. The challenge is to further reduce malaria using the available strategies as appropriate in the affected areas and populations. Elimination of malaria in the country will require a thorough understanding of transmission dynamics and a dedicated investment in key effective interventions.</p

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Annual variations in the number of malaria cases related to two different patterns of Anopheles darlingi transmission potential in the Maroni area of French Guiana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With an Annual Parasite Incidence (API) of 132.1, in the high and moderate risks zones, the Maroni area of French Guiana has the second highest malaria incidence of South-America after Guyana (API = 183.54) and far above Brazil (API = 28.25). Malaria transmission is occurring despite strong medical assistance and active vector control, based on general WHO recommendations. This situation is generated by two main factors that are the social and cultural characteristics of this border area, where several ethnic groups are living, and the lack of understanding of transmission dynamics of the main mosquito vector, <it>Anopheles darlingi.</it> In this context, entomological data collected in two villages belonging to two different ethnic groups of the French border of the Maroni River, were retrospectively analysed to find out how the mosquito bionomics are related to the malaria transmission patterns.</p> <p>Methods</p> <p>Data were provided by human landing catches of mosquitoes carried out each month for two years in two villages belonging to two ethnic groups, the Amerindians Wayanas and the Aloukous of African origin. The mosquitoes were sorted by species, sex, date, hour and place of collection and processed for <it>Plasmodium sp</it>. parasite detection. The data were compiled to provide the following variables: human biting rates (HBR), parity rates (PR), numbers of infective bites (IB), entomological inoculation rates (EIR) and numbers of infected mosquitoes surviving enough to transmit (IMT). Spatial and temporal differences of variables between locations and during the night were tested by the Kruskall-Wallis analysis of variance to find out significant variations.</p> <p>Results</p> <p>The populations of the main mosquito vector <it>An. darlingi </it>showed significant variations in the spatial and temporal HBR/person/night and HBR/person/hour, IB/person/month and IB/person/hour, and IMT/village/night and IMT/village/hour. In the village of Loca (Aloukous), the IMT peaked from June to August with a very low transmission during the other months. The risks were higher during the first part of the night and an EIR of 10 infective bites per person and per year was estimated. In the village of Twenke (Wayanas), high level of transmission was reported all year with small peaks in March and October. The risk was higher during the second part of the night and an EIR of 5 infective bites per person and per year was estimated.</p> <p>Conclusion</p> <p>For the first time in the past 40 years, the mosquito bionomics was related to the malaria transmission patterns in French Guiana. The peak of malaria cases reported from August to October in the Maroni region is concomitant with the significant peak of <it>An. darlingi </it>IMT, reported from the village of Loca where transmission is higher. However, the persistent number of cases reported all year long may also be related to the transmission in the Amerindian villages. The <it>An. darlingi </it>bionomics for these two close populations were found significantly different and may explain why a uniform vector control method is inadequate. Following these findings, malaria prevention measures adapted to the local conditions are needed. Finally, the question of the presence of <it>An. darlingi </it>sub-species is raised.</p
    corecore