102 research outputs found

    Measuring the sustainable development implications of climate change mitigation

    Get PDF
    Synergies and trade-offs exist between climate mitigation actions and target indicators of the Sustainable Development Goals (SDGs). Some studies have assessed such relationships, but the degree of such interaction remains poorly understood. Here, we show the SDG implications associated with CO2 emissions reductions. We developed 'marginal SDG-emissions-reduction values (MSVs)', which represent the marginal impacts on SDG indicators caused by a unit CO2 emissions reduction. This metric is applicable to national assessments and was applied to Asia. We found clear relationships between CO2 emissions reduction rates and many SDG targets. For instance, 1% reduction of CO2 can avoid 0.57% of air pollution-related premature deaths (SDG3), whereas the mean species richness (SDG15) is decreased by 0.026% with the same reduction (not including climate change impacts). Our findings are useful for assessing the SDG implications associated with CO2 emissions reduction targets, which will help inform national climate policies

    Will international emissions trading help achieve the objectives of the Paris Agreement?

    Get PDF
    Under the Paris Agreement, parties set and implement their own emissions targets as nationally determined contributions (NDCs) to tackle climate change. International carbon emissions trading is expected to reduce global mitigation costs. Here, we show the benefit of emissions trading under both NDCs and a more ambitious reduction scenario consistent with the 2 °C goal. The results show that the global welfare loss, which was measured based on estimated household consumption change in 2030, decreased by 75% (from 0.47% to 0.16%), as a consequence of achieving NDCs through emissions trading. Furthermore, achieving the 2 °C targets without emissions trading led to a global welfare loss of 1.4%–3.4%, depending on the burden-sharing scheme used, whereas emissions trading reduced the loss to around 1.5% (from 1.4% to 1.7%). These results indicate that emissions trading is a valuable option for the international system, enabling NDCs and more ambitious targets to be achieved in a cost-effective manner

    How do climate-related uncertainties influence 2 and 1.5 °C pathways?

    Get PDF
    We investigate how uncertainties in key parameters in the carbon cycle and climate system propagate to the costs of climate change mitigation and adaptation needed to achieve the 2 and 1.5 °C targets by 2100 using a stochastic version of the simple climate model for optimization (SCM4OPT), an integrated assessment model. For the 2 °C target, we find a difference in 2100 CO2 emission levels of 20.5 GtCO2 (− 1.2 GtCO2 to 19.4 GtCO2), whereas this difference is 12.0 GtCO2 (− 6.9 GtCO2 to 5.1 GtCO2) for the 1.5 °C target (17–83% range). Total radiative forcing in 2100 is estimated to be 3.3 (2.7–3.9) Wm−2 for the 2 °C case and 2.5 (2.0–3.0) Wm−2 for the 1.5 °C case. Carbon prices in 2100 are 482 (181–732) USD(2005)/tCO2 and 713 (498–1014) USD(2005)/tCO2 for the 2 and 1.5 °C targets, respectively. We estimate GDP losses in 2100 that correspond to 1.9 (1.2–2.5)% of total gross output for the 2 °C target and 2.0 (1.5–2.7)% for the 1.5 °C target

    Intercomparison of global river discharge simulations focusing on dam operation --- Part II: Multiple models analysis in two case-study river basins, Missouri-Mississippi and Green-Colorado

    Get PDF
    We performed a twofold intercomparison of river discharge regulated by dams under multiple meteorological forcings among multiple global hydrological models for a historical period by simulation. Paper II provides an intercomparison of river discharge simulated by five hydrological models under four meteorological forcings. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri-Mississippi and Green-Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river’s course to critically examine the performance of hydrological models because the performance can vary with the locations

    Total economic costs of climate change at different discount rates for market and non-market values

    Get PDF
    What will be the aggregated cost of climate change in achieving the Paris Agreement, including mitigation, adaptation, and residual impacts? Several studies estimated the aggregated cost but did not always consider the critical issues. Some do not address non-market values such as biodiversity and human health, and most do not address differentiating discount rates. In this study, we estimate the aggregated cost of climate change using an integrated assessment model linked with detailed-process-based climate impact models and different discount rates for market and non-market values. The analysis reveals that a climate policy with minimal aggregated cost is sensitive to socioeconomic scenarios and the way discount rates are applied. The results elucidate that a lower discount rate to non-market value—that is, a higher estimate of future value—makes the aggregated cost of achieving the Paris Agreement economically reasonable

    Technical summary

    Get PDF
    Human interference with the climate system is occurring. Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change and how risks can be reduced through mitigation and adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of mitigation and adaptation
    • …
    corecore