339 research outputs found

    Strategy for the identification of micro-organisms producing food and feed products : bacteria producing food enzymes as study case

    Get PDF
    Recent European regulations require safety assessments of food enzymes (FE) before their commercialization. FE are mainly produced by micro-organisms, whose viable strains nor associated DNA can be present in the final products. Currently, no strategy targeting such impurities exists in enforcement laboratories. Therefore, a generic strategy of first line screening was developed to detect and identify, through PCR amplification and sequencing of the 16S-rRNA gene, the potential presence of FE producing bacteria in FE preparations. First, the specificity was verified using all microbial species reported to produce FE. Second, an in-house database, with 16S reference sequences from bacteria producing FE, was constructed for their fast identification through blast analysis. Third, the sensitivity was assessed on a spiked FE preparation. Finally, the applicability was verified using commercial FE preparations. Using straightforward PCR amplifications, Sanger sequencing and blast analysis, the proposed strategy was demonstrated to be convenient for implementation in enforcement laboratories

    Expression study by real-time quantitative RT-PCR of the Salmonella typhimurium mntH gene

    Get PDF
    The aim of our study was to compare the mntH expression of different Salmonella Typhimurium strains and other Salmonella serovars with real-time RT-PCR. Following the mntH expression in function of the growth showed that the mntH expression of S. Typhimurium is growth dependent. A strong decrease of the mntH expression is noticed when the growth reaches 1.78 108 CFU/ml. After induction with EDTA or H2O2, variations between different S. Typhimurium strains were observed. For some S. Typhimurium strains a 10 to 20 times higher mntH expression was noticed after H2O2 induction. The EDTA induction was for most strains lower (5 to 10 times) but also variations between different strains were observed. The other Salmonella serovars were strongly induced after H2O2 but not after EDTA induction

    Selection and transfer of an IncI1-tet(A) plasmid of Escherichia coli in an exΒ vivo model of the porcine caecum at doxycycline concentrations caused by cross-contaminated feed

    Get PDF
    Aims: The aim of this study was to investigate the effect of subtherapeutic intestinal doxycycline (DOX) concentrations (4 and 1mgl(-1)), caused by cross-contamination of feed, on the enrichment of a DOX-resistant commensal Escherichia coli and its resistance plasmid in an exvivo model of the porcine caecum. Methods and Results: A DOX-resistant, tet(A)-carrying, porcine commensal E.coli strain (EC 682) was cultivated for 6days in the porcine caecum model under different conditions (0, 1 and 4mgl(-1) DOX). EC 682, other coliforms and anaerobic bacteria were enumerated daily. A selection of isolated DOX-resistant coliforms (n=454) was characterized by rep-PCR clustering, PCR assays (Inc1 and tet(A)) and micro broth dilution susceptibility tests (Sensititre). Both 1 and 4mgl(-1) DOX-enriched medium had a significantly higher selective effect on EC 682 and other resistant coliforms than medium without DOX. Transconjugants of EC 682 were isolated more frequently in the presence of 1 and 4mgl(-1) DOX compared to medium without DOX. Conclusions: Subtherapeutic intestinal DOX concentrations have the potential to select for DOX-resistant E.coli, and promote the selection of transconjugants in a porcine caecum model. Significance and Impact of the Study: Cross-contamination of feed with antimicrobials such as DOX likely promotes the spread of antimicrobial resistance. Therefore, it is important to develop or fine-tune guidelines for the safe use of antimicrobials in animal feed and its storage

    Characterization of Neutralizing Profiles in HIV-1 Infected Patients from whom the HJ16, HGN194 and HK20 mAbs were Obtained

    Get PDF
    Several new human monoclonal antibodies (mAbs) with a neutralizing potential across different subtypes have recently been described. Three mAbs, HJ16, HGN194 and HK20, were obtained from patients within the HIV-1 cohort of the Institute of Tropical Medicine (ITM). Our aim was to generate immunization antibodies equivalent to those seen in plasma. Here, we describe the selection and characterization of patient plasma and their mAbs, using a range of neutralization assays, including several peripheral blood mononuclear cell (PBMC) based assays and replicating primary viruses as well as cell line based assays and pseudoviruses (PV). The principal criterion for selection of patient plasma was the activity in an β€˜extended incubation phase’ PBMC assay. Neutralizing Abs, derived from their memory B cells, were then selected by ELISA with envelope proteins as solid phase. MAbs were subsequently tested in a high-throughput HOS-PV assay to assess functional neutralization. The present study indicates that the strong profiles in the patients' plasma were not solely due to antibodies represented by the newly isolated mAbs. Although results from the various assays were divergent, they by and large indicate that neutralizing Abs to other epitopes of the HIV-1 envelope are present in the plasma and synergy between Abs may be important. Thus, the spectrum of the obtained mAbs does not cover the range of cross-reactivity seen in plasma in these carefully selected patients irrespective of which neutralization assay is used. Nevertheless, these mAbs are relevant for immunogen discovery because they bind to the recombinant glycoproteins to which the immune response needs to be targeted in vivo. Our observations illustrate the remaining challenges required for successful immunogen design and development

    Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus

    Get PDF
    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed

    Two naphthalene degrading bacteria belonging to the genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants

    Get PDF
    Two bacterial strains were isolated in the presence of naphthalene as the sole carbon and energy source from sediments of the Orbetello Lagoon, Italy, which is highly contaminated with both organic compounds and metals. 16S rRNA gene sequence analysis of the two isolates assigned the strains to the genera Paenibacillus and Pseudomonas. The effect of different contaminants on the growth behaviors of the two strains was investigated. Pseudomonas sp. ORNaP2 showed a higher tolerance to benzene, toluene, and ethylbenzene than Paenibacillus sp. ORNaP1. In addition, the toxicity of heavy metals potentially present as co-pollutants in the investigated site was tested. Here, strain Paenibacillus sp. ORNaP1 showed a higher tolerance towards arsenic, cadmium, and lead, whereas it was far more sensitive towards mercury than strain Pseudomonas sp. ORNaP2. These differences between the Gram-negative Pseudomonas and the Gram-positive Paenibacillus strain can be explained by different general adaptive response systems present in the two bacteria

    HIV-1 gp41 Core with Exposed Membrane-Proximal External Region Inducing Broad HIV-1 Neutralizing Antibodies

    Get PDF
    The membrane-proximal external region (MPER) of the HIV-1 gp41 consists of epitopes for the broadly cross-neutralizing monoclonal antibodies 2F5 and 4E10. However, antigens containing the linear sequence of these epitopes are unable to elicit potent and broad neutralizing antibody responses in vaccinated hosts, possibly because of inappropriate conformation of these epitopes. Here we designed a recombinant antigen, designated NCM, which comprises the N- and C-terminal heptad repeats that can form a six-helix bundle (6HB) core and the MPER domain of gp41. Two mutations (T569A and I675V) previously reported to expose the neutralization epitopes were introduced into NCM to generate mutants named NCM(TA), NCM(IV), and NCM(TAIV). Our results showed that NCM and its mutants could react with antibodies specific for 6HB and MPER of gp41, suggesting that these antigens are in the form of a trimer of heterodimer (i.e., 6HB) with three exposed MPER tails. Antigen with double mutations, NCM(TAIV), elicited much stronger antibody response in rabbits than immunogens with single mutation, NCM(TA) and NCM(IV), or no mutation, NCM. The purified MPER-specific antibodies induced by NCM(TAIV) exhibited broad neutralizing activity, while the purified 6HB-specific antibodies showed no detectable neutralizing activity. Our recombinant antigen design supported by an investigation of its underlying molecular mechanisms provides a strong scientific platform for the discovery of a gp41 MPER-based AIDS vaccine
    • …
    corecore