9,701 research outputs found

    Size Constraints on Majorana Beamsplitter Interferometer: Majorana Coupling and Surface-Bulk Scattering

    Full text link
    Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here, we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the centre of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.Comment: 14 pages, 6 figure

    Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    Get PDF
    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled glass capillary actuated by a piezoelectric transducer. Here, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model predicts resonance modes well suited for acoustic trapping, their frequencies and quality factors, the magnitude of the acoustic radiation force on a single test particle as a function of position, and the resulting acoustic retention force of the trap. We show that the model predictions are in agreement with published experimental results, and we discuss how improved and more stable acoustic trapping modes might be obtained using the model as a design tool.Comment: 13 pages, 15 pdf figures, pdfLatex/Revte

    Complexity Reduction for Parameter-Dependent Linear Systems

    Full text link
    We present a complexity reduction algorithm for a family of parameter-dependent linear systems when the system parameters belong to a compact semi-algebraic set. This algorithm potentially describes the underlying dynamical system with fewer parameters or state variables. To do so, it minimizes the distance (i.e., H-infinity-norm of the difference) between the original system and its reduced version. We present a sub-optimal solution to this problem using sum-of-squares optimization methods. We present the results for both continuous-time and discrete-time systems. Lastly, we illustrate the applicability of our proposed algorithm on numerical examples

    Design of State-based Schedulers for a Network of Control Loops

    Full text link
    For a closed-loop system, which has a contention-based multiple access network on its sensor link, the Medium Access Controller (MAC) may discard some packets when the traffic on the link is high. We use a local state-based scheduler to select a few critical data packets to send to the MAC. In this paper, we analyze the impact of such a scheduler on the closed-loop system in the presence of traffic, and show that there is a dual effect with state-based scheduling. In general, this makes the optimal scheduler and controller hard to find. However, by removing past controls from the scheduling criterion, we find that certainty equivalence holds. This condition is related to the classical result of Bar-Shalom and Tse, and it leads to the design of a scheduler with a certainty equivalent controller. This design, however, does not result in an equivalent system to the original problem, in the sense of Witsenhausen. Computing the estimate is difficult, but can be simplified by introducing a symmetry constraint on the scheduler. Based on these findings, we propose a dual predictor architecture for the closed-loop system, which ensures separation between scheduler, observer and controller. We present an example of this architecture, which illustrates a network-aware event-triggering mechanism.Comment: 17 pages, technical repor

    Discrimination and Strategic Group Division in Tournaments

    Get PDF
    The contracts we consider in this paper must solve three problems: moral hazard, insurance and discrimination. The moral hazard problem is that of providing the agents with incentives to perform in a way that maximizes the profit to the principal, when the agent's actions are unobservable. The insurance problem is that of minimizing the cost of risk through risk minimization and risk sharing. The issue of discrimination is that of paying agents with different skills sufficiently to participate, without overcompensating other agents. We show how the principal may benefit from a strategic division of the agents into different tournaments or groups. The optimal number of groups from the principal's point of view is determined through a trade-off between moral hazard, insurance and discrimination issues.Agribusiness,

    Rodent models for the analysis of tissue clock function in metabolic rhythms research

    Get PDF
    The circadian timing system consists on a distributed network of cellular clocks that together coordinate 24-h rhythms of physiology and behavior. Clock function and metabolism are tightly coupled, from the cellular to the organismal level. Genetic and non-genetic approaches in rodents have been employed to study circadian clock function in the living organism. Due to the ubiquitous expression of clock genes and the intricate interaction between the circadian system and energy metabolism, genetic approaches targeting specific tissue clocks have been used to assess their contribution in systemic metabolic processes. However, special requirements regarding specificity and efficiency have to be met to allow for valid conclusions from such studies. In this review, we provide a brief summary of different approaches developed for dissecting tissue clock function in the metabolic context in rodents, compare their strengths and weaknesses, and suggest new strategies in assessing tissue clock output and the consequences of circadian clock disruption in vivo.Fil: Tsang, Anthony H.. University of LĂĽbeck; Alemania. University of Cambridge; Reino UnidoFil: Astiz, Mariana. University of LĂĽbeck; Alemania. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Leinweber, Brinja. University of LĂĽbeck; AlemaniaFil: Oster, Henrik. University of LĂĽbeck; Alemani

    Corporate Risk-Taking and the Decline of Personal Blame

    Get PDF
    The ability to maintain state awareness in the face of unexpected and unmodeled errors and threats is a defining feature of a resilient control system. Therefore, in this paper, we study the problem of distributed fault detection and isolation (FDI) in large networked systems with uncertain system models. The linear networked system is composed of interconnected subsystems and may be represented as a graph. The subsystems are represented by nodes, while the edges correspond to the interconnections between subsystems. Considering faults that may occur on the interconnections and subsystems, as our first contribution, we propose a distributed scheme to jointly detect and isolate faults occurring in nodes and edges of the system. As our second contribution, we analyze the behavior of the proposed scheme under model uncertainties caused by the addition or removal of edges. Additionally, we propose a novel distributed FDI scheme based on local models and measurements that is resilient to changes outside of the local subsystem and achieves FDI. Our third contribution addresses the complexity reduction of the distributed FDI method, by characterizing the minimum amount of model information and measurements needed to achieve FDI and by reducing the number of monitoring nodes. The proposed methods can be fused to design a scalable and resilient distributed FDI architecture that achieves local FDI despite unknown changes outside the local subsystem. The proposed approach is illustrated by numerical experiments on the IEEE 118-bus power network benchmark.QC 20141114</p
    • …
    corecore