11,367 research outputs found

    “It Takes a (Healthy) Village to Raise a Child:” A Case for Integrating Public Health and Social Work Research to Eliminate Health Disparities

    Get PDF
    Issue Editor, Heather H. Goltz, introduces Volume 17, Issue 1 of the Journal of Family Strengths

    Where Does the Density Localize? Convergent Behavior for Global Hybrids, Range Separation, and DFT+U

    Get PDF
    Approximate density functional theory (DFT) suffers from many-electron self- interaction error, otherwise known as delocalization error, that may be diagnosed and then corrected through elimination of the deviation from exact piecewise linear behavior between integer electron numbers. Although paths to correction of energetic delocalization error are well- established, the impact of these corrections on the electron density is less well-studied. Here, we compare the effect on density delocalization of DFT+U, global hybrid tuning, and range- separated hybrid tuning on a diverse test set of 32 transition metal complexes and observe the three methods to have qualitatively equivalent effects on the ground state density. Regardless of valence orbital diffuseness (i.e., from 2p to 5p), ligand electronegativity (i.e., from Al to O), basis set (i.e., plane wave versus localized basis set), metal (i.e., Ti, Fe, Ni) and spin state, or tuning method, we consistently observe substantial charge loss at the metal and gain at ligand atoms (ca. 0.3-0.5 e or more). This charge loss at the metal is preferentially from the minority spin, leading to increasing magnetic moment as well. Using accurate wavefunction theory references, we observe that a minimum error in partial charges and magnetic moments occur at higher tuning parameters than typically employed to eliminate energetic delocalization error. These observations motivate the need to develop multi-faceted approximate-DFT error correction approaches that separately treat density delocalization and energetic errors in order to recover both correct density and magnetization properties.Comment: 34 pages, 11 figure

    Urban Water Conservation and Efficiency Potential in California

    Get PDF
    Improving urban water-use efficiency is a key solution to California's short-term and longterm water challenges: from drought to unsustainable groundwater use to growing tensions over limited supplies. Reducing unnecessary water withdrawals leaves more water in reservoirs and aquifers for future use and has tangible benefits to fish and other wildlife in our rivers and estuaries. In addition, improving water-use efficiency and reducing waste can save energy, lower water and wastewater treatment costs, and eliminate the need for costly new infrastructure

    Khovanov Homology, Lee Homology and a Rasmussen Invariant for Virtual Knots

    Full text link
    The paper contains an essentially self-contained treatment of Khovanov homology, Khovanov-Lee homology as well as the Rasmussen invariant for virtual knots and virtual knot cobordisms which directly applies to classical knot and classical knot cobordisms. To do so, we give an alternate formulation for the Manturov definition of Khovanov homology for virtual knots and links with arbitrary coefficients. This approach uses cut loci on the knot diagram to induce a conjugation operator in the Frobenius algebra. We then discuss the implications of the maps induced in the aforementioned theory to the universal Frobenius algebra for virtual knots. Next we show how one can apply the Karoubi envelope approach of Bar-Natan and Morrison on abstract link diagrams with cross cuts to construct the canonical generators of the Khovanov-Lee homology. Using these canonical generators we derive a generalization of the Rasmussen invariant for virtual knot cobordisms and furthermore generalize Rasmussen's result on the slice genus for positive knots to the case of positive virtual knots. It should also be noted that this generalization of the Rasmussen invariant provides an easy to compute obstruction to knot cobordisms in Sg×I×IS_g \times I \times I in the sense of Turaev

    Employees’ Financial Insecurity and Health: The Underlying Role of Stress and Work–Family Conflict Appraisals

    Full text link
    Data from two longitudinal samples were utilized to elucidate underlying mechanisms of the well‐established relationship between financial insecurity and health outcomes, stemming from the theoretical rationale of conservation of resources and cognitive appraisal theories. Study 1 (n = 80) consisted of low‐wage food manufacturing employees working full time, while Study 2 (n = 331) was consisted of a larger, heterogeneous sample of full‐time workers representing multiple occupations. Respondents were surveyed on financial insecurity, work‐to‐family conflict (WFC), stress, and health outcomes at two time periods, 3 months apart. Results across our studies provided support for the direct effects of financial insecurity on WFC and stress. In addition, appraisals of WFC and stress serve as significant mediators of the relationship between financial insecurity and health outcomes, including a significant overall lagged effect across time, and perceived stress accounting for the largest proportion of variance in the lagged relationship among Time 1 financial insecurity and Time 2 health outcomes. Besides support for conservation of resources and cognitive appraisal theories, practically, our studies suggest that workplace initiatives to reduce financial insecurity could positively influence employees’ work–family, stress, and health experiences

    Review of Listening Up, Writing Down, and Looking Beyond: Interfaces of the Oral, Written, and Visual, edited by Susan Gingell and Wendy Roy

    Get PDF
    Review of Listening Up, Writing Down, and Looking Beyond: Interfaces of the Oral, Written, and Visual, edited by Susan Gingell and Wendy Ro

    Efficiency and accuracy validation for incremental changes of a large-scale protein structure database [abstract]

    Get PDF
    Abstract only availableProteins, the essential building blocks of organisms, have many important roles, from providing structure to aiding movement and digestion. The construction of proteins involves one or more polypeptide chains that fold into complicated 3D structures. Each protein has a unique shape and some specific functions, which are intricately and irrevocably connected. In order to aid the study of structure-function relationships, ProteinDBS developed at the University of Missouri-Columbia presents a fast structure retrieval system to find proteins with such structural similarities. To present the most accurate results, ProteinDBS features automatic weekly updates of its system from the Protein Data Bank (PDB) which has over 76,000 protein chains and continuously grows the database size at least linearly. This research focuses on the efficiency and accuracy of protein structure retrieval using the ProteinDBS system as the size of the dataset grows. The investigation examines changes in results arising from the addition of new proteins to the system and illuminates the reasons for differences among search results. First, the system automatically checks protein domains and folds after insertion of new proteins. Testing proteins collected from various plants, such as maize and soybean, are validated against both the original dataset and the new, larger dataset. The systems compares the results from both sets of data to determine the changes in the composition of the result set, including the proliferation of newly inserted proteins, and the relative ordering of proteins in the ranked results. The analysis provides a thorough investigation of the effect the dataset has on protein structure retrieval and suggests areas for future improvement of the algorithmic designs of ProteinDBS in feature extraction, database indexing, and result ranking.National Science Foundation, University of Missouri-Columbia Research Counci
    corecore