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ABSTRACT: Approximate density functional theory (DFT) suffers from many-electron self-
interaction error, otherwise known as delocalization error, that may be diagnosed and then 
corrected through elimination of the deviation from exact piecewise linear behavior between 
integer electron numbers. Although paths to correction of energetic delocalization error are well-
established, the impact of these corrections on the electron density is less well-studied. Here, we 
compare the effect on density delocalization of DFT+U (i.e., semi-local DFT augmented with a 
Hubbard U correction), global hybrid tuning, and range-separated hybrid tuning on a diverse test 
set of 32 transition metal complexes and observe the three methods to have qualitatively 
equivalent effects on the ground state density. Regardless of valence orbital diffuseness (i.e., 
from 2p to 5p), ligand electronegativity (i.e., from Al to O), basis set (i.e., plane wave versus 
localized basis set), metal (i.e., Ti, Fe, Ni) and spin state, or tuning method, we consistently 
observe substantial charge loss at the metal and gain at ligand atoms (ca. 0.3-0.5 e or more). This 
charge loss at the metal is preferentially from the minority spin, leading to increasing magnetic 
moment as well. Using accurate wavefunction theory references, we observe that a minimum 
error in partial charges and magnetic moments occur at higher tuning parameters than typically 
employed to eliminate energetic delocalization error. These observations motivate the need to 
develop multi-faceted approximate-DFT error correction approaches that separately treat density 
delocalization and energetic errors in order to recover both correct density and orbital energy-
derived properties.  
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1. Introduction 

Presently available exchange-correlation (xc) approximations in DFT are plagued by both 

one- and many-electron self-interaction errors (SIE)1-5, also referred to as delocalization error6-8 

(DE), which give rise to well-known problems in dissociation energies2, 9-12, barrier heights13, 

band gaps14-15, and electron affinities16-18. Although referred to as a delocalization error, this error 

is rigorously defined in energetic terms, with more indirect connection to the density itself. In 

particular, it is known19 that an exact energy functional should be piecewise linear with respect to 

fractional addition (q) or removal of charge: 

 E(q)= (1−q)E(N )+qE(N +1)  , (1) 

where E(N) and E(N+1) are the energies of N- and N+1-electron systems, respectively, and q is 

varied between 0 (N electrons) and 1 (N+1 electrons). Both semi-local (e.g., local density 

approximation, LDA or generalized gradient approximation, GGA) functionals and the formally 

self-interaction free Hartree-Fock (HF) theory produce a deviation from piecewise-linearity20 in 

E(q) with convex and concave behavior, respectively1, 21, and lack the associated derivative 

discontinuity22-25 of the exact functional.  

 The correction of this deviation from linearity and elimination of energetic DE is 

achieved by invoking Janak's26 theorem to both identify27 and then correct an xc functional’s 

curvature from the difference in the N+1-electron highest occupied molecular orbital (HOMO) 

and the N-electron lowest unoccupied molecular orbital (LUMO) eigenvalues: 

 ∂2E
∂q2

= εN+1
HOMO −εN

LUMO  . (2) 
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By tuning the range separation parameters28-37 that divide short-range semi-local or hybrid xc 

forms from long-range HF exchange to minimize this curvature, tuned range-separated hybrids38-

44 frequently improve excited state45 and some ground state32 properties by improving energetic 

delocalization error.1, 4, 7-8, 14, 34, 46-47 The simplicity of this approach has led to its increased use 

over more established orbital-dependent corrections that remove one-electron SIE48-54 and 

recover Koopmans’ theorem55 within self-interaction corrected DFT56-57. Prior to the 

development of range-separated hybrids, global hybrids with varying mixtures of HF exchange58 

had also been widely employed to approximately correct SIE and are still a main ingredient in 

flexible tuning of range-separated hybrids (see Sec. 2).  

Some of us recently demonstrated59 that the DFT+U method60-61, widely employed for 

approximately treating SIE in semi-local DFT treatments of transition metal chemistry62, will 

never worsen energetic DE and may also recover piecewise linearity with varying degrees of 

efficiency. This good behavior from an admittedly somewhat empirical correction is reassuring 

for the continued use of DFT+U where it is the most viable approach to improve semi-local 

functionals, e.g. in large periodic simulations where less empirical self-interaction free methods 

are computationally challenging. We also established that the appropriate U should be equal to a 

scaled value obtained from eqn. 2, rather than the self-consistent63, linear-response64-65 U 

calculated at fixed electron number. This observation can also be understood in the context of the 

marked size-dependence66-69 of the range-separated hybrid tuning strategy, absent in equivalent 

calculations of linear-response U, which highlights that correction of energetic DE is not a 

sufficient criterion for SIE removal as system size grows.  

 Despite the successes of range-separated hybrids, global hybrids, and DFT+U for 

eliminating energetic DE, the impact of any of these strategies on properties of the density is less 
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well-established. There are clear improvements to densities in pathological cases where the 

density DE and energy DE are both a result of charge transfer error7-8, 70. Some of us recently 

observed71 global HF exchange tuning to universally localize electron density away from the 

metal and onto ligand states, consistent with range-separated hybrid studies that show decreased 

dative bonding in both 3d states of the diatomic molecule CuCl32 or in a representative iron 

octahedral complex72 and 4f states in lanthanide complexes73. Within DFT+U, the potential that 

favors localization should enhance filling of d or f states that are more than ½ filled while 

emptying states that are less than ½ filled (see Sec. 2), and the connection in the solid state 

community of DFT+U to the Hubbard74 and Anderson75 model Hamiltonians frequently invokes 

a statement regarding electrons being localized onto a metal site, not away from it, suggesting 

DFT+U could behave differently from hybrid functionals. Correct densities are a necessity for 

interpreting trends in chemical bonding76 and associated observable quantities. Some functionals 

well-known to provide good energetics (e.g., B3LYP77-79), however have been demonstrated to 

yield poor densities in comparison to accurate references80, while others may yield poor 

energetics and good densities81. Replacement of approximate DFT densities with ones derived 

from HF have been demonstrated to yield improved barrier heights82-83 and dissociation energies6, 

84-85, enabling a separation of energetic- and density-driven delocalization errors6. Thus, it 

becomes clear that continued advancement of xc approximations necessitates consideration of 

delocalization errors both energetic and density-oriented in nature.  

 In this work, we provide a comprehensive demonstration of the universal nature of 

density localization in transition metal complexes from metal to ligand across 32 complexes that 

span varying ligand diffuseness and electronegativity, varying metal occupations, and both 

stretched and compressed bonds, regardless of the delocalization error correction (i.e., DFT+U, 
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global hybrids, or range separated hybrids) employed. We also explore the extent to which this 

energetic delocalization error correction reduces density errors with respect to accurate 

wavefunction theory references. The rest of this article is outlined as follows. In sections 2 and 3, 

we provide the Theoretical and Computational Details, respectively, of the methods and 

calculations employed in this work. In section 4, we present Results and Discussion of the nature 

of density localization. Finally, in section 5, we provide our Conclusions. 

2. Theoretical Details 

In this work, we compare three strategies for treating energy- and density-delocalization error. 

Global Hybrid Functionals. Hybrid functionals are widely employed for approximately 

correcting self-interaction errors in practical DFT. Both low86-88 and high89-91 percentages of 

Hartree-Fock (HF) exchange have been proposed for the accurate description of transition metal 

complexes, likely due to the increasing static correlation error4 with increasing HF exchange, as 

diagnosed by increasing fractional spin error92. The well-known B3LYP77-79 hybrid is defined as: 

 Exc
B3LYP = Ex

LDA +a0 (Ex
HF −Ex

LDA )+ax (Ex
GGA −Ex

LDA )+Ec
LDA +ac(Ec

GGA −Ec
LDA )   (3) 

where a0=0.20 (20% exchange), and the GGA (B88) enhancement factors over LDA are ax=0.72 

and ac=0.81 for exchange and correlation, respectively. We again employ a modified71 B3LYP 

exchange expression to enable HF exchange tuning:  

 Ex
modB3LYP = Ex

LDA +a0 (Ex
HF −Ex

LDA )+0.9(1−a0 )(Ex
GGA −Ex

LDA )   (4) 

while holding the GGA/LDA ratio fixed to the 9:1 value in standard B3LYP77-79. 

Range-Separated Hybrid Functionals. The most widely-utilized34 approach for correcting 

energetic delocalization error is to employ a range-separated93 hybrid functional, which 
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introduces a distance-dependent Coulomb repulsion operator: 

 1
r12
=
1−[α +βerf(ωr12 )]

r12
+
α +βerf(ωr12 )

r12
 , (5) 

where the first, short-range potential term decays on a 1/ω length-scale, and the second term is a 

long-range potential with correct 1/r asymptotic behavior for α+β=1. We restrict the focus in this 

work to introducing HF exchange in the long-range portion and employing semi-local DFT in the 

short range (i.e., α=0, β=1), where eqn. 5 then takes the form: 

 1
r12
=
1− erf(ωr12 )

r12
+
erf(ωr12 )

r12
 , (6) 

specifically with the LRC-ωPBE functional94, which uses PBE95-GGA in the short-range.  

DFT+U. The full DFT+U energy functional61, 96 may be expressed as: 

 EDFT+U[n(r)]= EDFT[n(r)]+EHub[{nm
Iσ }]−EDC[{n

Iσ }]  , (7) 

where the first term (DFT) is the contribution from any xc approximation, the second term (Hub) 

is a Hubbard model Hamiltonian correction, and the double counting (DC) term approximately 

removes the effect of corrections present in both of the first two terms. There will be a Hub and 

DC contribution for each Hubbard atom and subshell identified. By employing a DC term 

obtained within the fully-localized limit and making a frequent simplifying assumption65, 97 to 

treat same-spin and opposite-spin electrons equivalently (i.e., Ueff=U-J) we obtain an expression 

for the DFT+U energy as: 

 EDFT+U = EDFT +
1
2

Unl
I [Tr(n

nl

Iσ (1−
nl
∑ n

nl

Iσ ))
I ,σ
∑ ]  . (8) 
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There is a "+U" contribution for each nl subshell of atom I to which a Unl
I  is applied. The 

elements of the nnl
Iσ  occupation matrix are obtained as a projection of the molecular state ψk ,ν  

at k-point k onto localized atomic orbitals on an atom I: 

 nmm '
Iσ = ψk ,ν φm '

I φm
I ψk ,ν

k ,ν
∑  . (9) 

The "+U" correction is incorporated self-consistently with a modification to the potential as: 

 VU =
Unl

I

2
(1−2nnl ,m

Iσ )
m
∑ φnl ,m

I

I ,nl
∑ φnl ,m

I  . (10) 

The range of effects of the “+U” functional on both the total energies and molecular orbital 

energies for energetic delocalization error correction has been recently outlined by some of us.59 

The Hubbard U corresponds to the difference between the ionization potential (IP) and electron 

affinity (EA) of electrons on atom I in subshell nl with respect to the rest of the system, which is 

a finite difference approximation to the second derivative of the energy (i.e., Unl
I =

∂2E
∂(nnl

I )2
) that 

may be calculated, as outlined in Ref. 62. Comparison between DFT+U and hybrid methods has 

been of recent interest98 due to the ease of use of the former in periodic boundary conditions and 

the latter in gas phase calculations. 

3. Computational Details 

 Global and range-separated exact exchange. The effect of exact exchange was investigated 

by altering71 the percentage of Hartree-Fock (HF) exchange in a modified form of the B3LYP77-79 

global hybrid functional from as low as 0% (i.e., a pure BLYP GGA) to as high as 40% HF 

exchange in increments of 10%, unless otherwise noted. The effect of long-range Hartree-Fock 
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exchange was investigated by altering the range-separation parameter ω in the ωPBE range-

separated hybrid functional93, which mixes the pure Perdew-Burke-Ernzerhof (PBE)95 GGA 

functional at short range with asymptotically correct HF exchange at long range. The value of ω 

varied in this work is from 0.0 bohr-1 (i.e., pure PBE) to as high as 0.4 bohr-1 in increments of 0.1 

bohr-1. Both sets of calculations were performed using the TeraChem99-100 graphical processing 

unit (GPU)-accelerated quantum chemistry package with a localized basis set (LBS). The default 

definition of B3LYP in TeraChem employs the VWN1-RPA form for the LDA VWN101 

component of LYP77 correlation. Ti, Fe, Ni, Se, and Te were treated with the LANL2DZ 

effective core potential102-103, and the 6-31G* basis was used for the remaining atoms. All 

calculations were spin-unrestricted with virtual and open-shell orbitals level-shifted104 by 1.0 and 

0.1 eV, respectively, to aid self-consistent field (SCF) convergence to an unrestricted solution. 

 DFT+U. DFT+U calculations were performed using the periodic boundary condition code 

Quantum-ESPRESSO105, which employs a plane-wave basis set (PWBS). The PBE95 GGA was 

employed with ultrasoft pseudopotentials (USPPs)106 obtained from the Quantum-ESPRESSO 

website107. Plane-wave cutoffs were 30 Ry for the wavefunction and 300 Ry for the charge 

density. A full list of USPPs used in this work is provided in Table S1 of the Supporting 

Information. The Martyna-Tuckerman scheme108 was used in order to eliminate periodic image 

effects in the calculations on the molecular complexes studied. Cubic box dimensions ranging 

from 8 Å to 12 Å were employed depending on the size of the complex together with a 320 x 320 

x 320 FFT grid, and a list of box dimensions for each complex is provided in Table S2 of the 

Supporting Information. Box sizes were chosen to ensure a reasonably small grid spacing for the 

accurate determination of Bader atomic charges. At least 15 and up to 25 unoccupied states 

(bands) were included for all complexes. The DFT+U correction on the 3d states of the transition 
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metal complexes employed projections onto atomic states obtained during pseudopotential 

generation, as is standard practice62. The Hubbard U values employed in this work ranged from 0 

eV (i.e., pure PBE-GGA) to 5 eV in 1 eV increments, unless otherwise noted, following common 

practice in studies of tuning U effects and typical ranges of U values employed.62, 109  

 Correlated wavefunction theory (WFT). Complete active space second-order perturbation 

theory (CASPT2)110 calculations were performed with Molcas 8.0111 on three representative 

geometries: equilibrium and stretched [Fe(H2O)6]2+ and equilibrium [Fe(NH3)6]2+. Calculations 

were carried out following the details described in ref 112. Relativistic atomic natural orbital 

(ANO-rcc) basis sets113-114 contracted to [7s6p5d3f2g1h] for Fe, [4s3p2d1f] for O and N and 

[3s1p] for H were used together with the scalar-relativistic Douglas-Kroll Hamiltonian115-116. An 

imaginary level shift of 0.1 and IPEA shift of 0.25 were also used117-118. Active spaces of 10 

electrons in 12 orbitals were used for the equilibrium complexes but a smaller active space of 6 

electrons in 10 orbitals was used for the stretched complex due to RASSCF convergence failure 

with the (10,12) active space. 

 

Figure 1. Summary of transition metal complexes studied in this work. (Top, left) Fe(II) 
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octahedral complexes with group 16 ligands and ligands of varying field strength. (Top, right) 
Ti(II) and Ni(II) octahedral complexes of varying ligand field strength. (Bottom, left) Fe(II) 
octahedral complexes with weak-field water and strong field carbonyl ligands in compressed or 
stretched geometries. (Bottom, right) Distorted, square planar Fe(II) chalcogenide complexes 
with oxygen, sulfur, and selenium. 

 Geometric structures and electron configurations. A total of 32 different complexes (29 

octahedral and 3 distorted tetrahedral) with varying metal centers and ligands were studied in this 

work (see Figure 1 for representative structures and Supporting Information Table S2 for a 

complete list). The polyselenide complex structure was obtained from the Cambridge Structural 

Database119 (accession code DIWLAY) through a search using the CCDC ConQuest web-

screening tool limiting elements to Fe and Se. Analogous polyoxide and polysulfide structures 

were built by replacing the Se atoms with O and S atoms respectively. Structures for all other 

complexes were generated with the molSimplify120 toolkit with the trained metal-ligand bond 

length feature enabled. These structures were subsequently geometry optimized with standard 

B3LYP in the charge corresponding to M(II) oxidation state and the ground high-spin state 

assigned to the isolated ion according to the National Institute of Standards and Technology 

atomic spectra database121, i.e. quintet for Fe and triplet for Ti or Ni. This chosen spin state 

corresponds to the ground state for the ligands studied in this work, except for the strong-field 

ligand cases (e.g., CO) where low spin configurations may be preferred, but we compare effects 

within a fixed oxidation and spin state to simplify comparison, unless noted in the text.59 The 

optimizations were carried out using the L-BFGS algorithm in translation and rotation internal 

coordinates122 as implemented in a development version of TeraChem99-100 to the default 

tolerances of 4.5x10-4 hartree/bohr for the maximum gradient and 1x10-6 hartree for the change in 

SCF energy between steps. Structures with non-equilibrium metal-ligand bond lengths were 

generated by direct bond length manipulation in Avogadro 2 0.8.012, 123 without subsequent 
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constrained geometry optimization. Coordinates of all geometries studied in this work are 

provided in the Supporting Information. 

 Partial charges and post-processing. Natural population analysis (NPA)124 partial charges 

and subshell occupations were obtained from the TeraChem interface with the Natural Bond 

Orbital (NBO) v6.0 package125. For quantification and comparison of partial charges across all 

three tuning procedures, we employ Bader atomic charges76, 126, obtained from the BADER 

program127, as they are solely functions of the spatial electron density (comparisons to alternate 

partial charge schemes are provided in the Supporting Information). The same grid resolution 

and dimensions were used across all methods for consistency. Vacuum charges not assigned to 

any atomic volume were ignored as the central position of the metal in all complexes ensures 

small and well-defined atomic volumes. Magnetic moments were calculated by integrating the 

spin density over the Bader atomic volumes for global and range-separated exact exchange, and 

by taking the difference of spin-up and spin-down Lowdin populations for DFT+U. Cube files 

and electron density differences were obtained using the Multiwfn post-processing package128 for 

TeraChem calculations and the pp.x post-processing code for Quantum-ESPRESSO calculations. 

4. Results and Discussion 

4a. Charge Localization in Representative Complexes  

 We first consider the prototypical [Fe(H2O)6]2+ complex which has been widely employed in 

previous studies on evaluating exchange-correlation functional choice71, 89, 129, the role of exact 

exchange71, 89, and curvature corrections59 in transition-metal complexes. In this complex, a 

quintet spin-state Fe is in the +2 oxidation state with weak σ-donation from the ligands to the 

metal center, and the B3LYP-optimized structure employed in our analysis is a slightly distorted 

octahedron with average Fe-O bond length of 2.14 Å (see Supporting Information for 
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coordinates).  

 We note that slight differences are present in the three GGA reference points we use for 

evaluating functional tuning strategies, namely: the PBE-GGA limit is achieved for ω-tuning and 

DFT+U but in a localized basis set (LBS) and plane-wave basis set (PWBS) formalism, 

respectively, whereas the HF exchange tuning aHF=0 limit corresponds to a pure BLYP-

GGA/LBS result. Nevertheless, differences for the GGA reference obtained from each of the 

three tuning strategies are slight, with all three methods providing a partial charge close to the 

overall average GGA Fe Bader partial charge of approximately 1.5 (see the left-most point in 

each plot in Figure 2). Regardless of tuning method employed, we observe that the already 

positive Fe partial charge uniformly increases with the tuning parameter for HF exchange, “+U” 

correction, and range-separation, signifying further charge localization away from the metal and 

onto the ligands. Absolute partial charges are known to be sensitive to the partitioning scheme 

employed, but the trends in partial charges observed here are less sensitive to method choice, as 

indicated by comparable predictions with alternate partial charge schemes (see Supporting 

Information).   

 It may be expected that introduction of global and range-separated HF exchange impact the 

electron density equivalently. It is, however, surprising that the functional form of DFT+U 

produces the same effect since the “+U” potential may be expected to increase occupation of all 

half-filled atomic orbitals and only decrease occupation of less than half-filled atomic orbitals. 

Although DFT+U is frequently viewed as a scheme to localize orbitals, we can understand our 

present observations to not necessarily be at odds with this notion. Specifically, fractional 

occupations are penalized in DFT+U, and the small partial occupations of n < ½ atomic orbitals 

are more flexibly affected by the “+U” potential, emptying faster than the n > ½ atomic orbitals 
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are filled.  

 

Figure 2. Dependence of Fe partial charge with U (left), aHF (center), and ω (right) for the 
octahedral [Fe(H2O)6]2+ complex. The black dashed lines indicate the linear approximation from 
displayed endpoints used to quantify the partial charge sensitivities, as described in the main text. 

 

 Whereas approximately linear behavior is observed across the range of U and aHF studied 

(Figure 2, left and center), there is a marked nonlinear dependence on ω (Figure 2, right), which 

can be rationalized in terms of the functional form of the range-separated hybrid functional (see 

Section 2). We thus introduce linear fits as approximations to the Fe partial charge sensitivities (

S ), or the partial derivatives of the Fe partial charge with respect to each of the tuning 

parameters, p, 

 { }slope , , , ,Fe Fe
p HF

q qS p a U
p p

ω
Δ ∂

= = ≈ ∈
Δ ∂

  (11) 

noting that the derivative with respect to ω is approximately evaluated from the endpoints at ω = 

0.0 to 0.4 bohr-1 to maintain consistency with the other tuning parameters. The units for U and ω 

are eV and bohr-1 respectively, and we use the unit notation “HFX”71 to represent the range from 

0% to 100% HF exchange. Some consideration should be made to the relative range of tuning 

typically employed for each of these three strategies to approximately correct SIE. Namely, the 

commonly proposed values of HF exchange for transition metal complexes in the literature range 
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from around 0%86-88 to at most 40-50%89-91 (i.e., 0.5 HFX), and most optimally-tuned RSH results 

on analogous 4f complexes73 span a range of 0.0 to 0.5 bohr-1 for ω. In comparison, typical 

ranges of U would be from 0 to around 5 eV or more.59, 62 Returning to the sensitivities for the 

hexa-aqua complex (Figure 2 and Supporting Information Table S4), we observe roughly 0.05 e 

loss from Fe with DFT+U tuning up to 5 eV, intermediate 0.10 e loss for ω up to 0.4, and 0.12 e 

loss for HF exchange up to 40%, indicating relatively comparable effects of these tuning 

parameters (see also Sec. 4e). Therefore, when reporting sensitivities we take into account the 

inequivalence of the order of magnitude of units in the denominator by multiplying all DFT+U 

sensitivities by 10, as indicated throughout the rest of this work (i.e., for Fe(H2O)6
2+, Sp values 

are 0.33 e/HFX, 0.13 e/10 eV of U, and 0.25 e/bohr-1, see Supporting Information Table S4).  

 Comparing our GGA-calculated and tuned Fe Bader partial charges against those calculated 

at the CASPT2 level of theory, we find fortuitously good agreement between the GGA and 

CASPT2 Fe partial charges of 1.5 for both methods in the hexa-aqua complex. Thus, increased 

electron density localization onto ligands by any of the three tuning strategies will worsen 

agreement with CASPT2 results. The GGA agreement is poorer, however, for the structurally 

and chemically similar hexa-ammine complex, with GGA and CASPT2 Fe partial charges of 1.4 

and 1.6, respectively, suggesting a beneficial effect of approximate SIE corrections. Introducing 

and extrapolating a linear fit from eq. (11), approximately 65% HF exchange, ω=0.8 Bohr-1, or a 

U of 24 eV, will bring the DFT partial charges for the hexa-ammine complex into quantitative 

agreement with those from CASPT2 (see Supporting Information Table S3 for details). We will 

return to these two complexes later in the text to identify whether DFT and WFT density 

properties obtained at functional parameters tuned to recover piecewise linearity are in improved 

agreement (see Sec. 4e).  
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 To further investigate the specific origin of the observed density localization away from the 

metal center, we obtain the Fe 3d and 4s subshell occupancies as computed by the NAO scheme 

for HF exchange and LRC and an orthogonalized atomic projection scheme for the “+U” 

correction. Total occupancies of the t2g (dxy, dxz and dyz) and eg (dx2-y2 and dz2) AOs provide a good 

representation of the occupied electron density, whereas the 4s AO may be neglected due to its 

occupancy being solely derived from hybridization with the 3d AOs (i.e., Fe(II) has a nominal 

d6s0 electron configuration121). We observe that both the t2g and eg occupancies decrease as each 

tuning parameter increases, signifying a common physical origin of ligand charge localization 

across all three tuning procedures that is independent of orbital energy or character. 

 The extent of charge localization away from the metal center may also be visualized 

directly in terms of the electron density difference (Figure 3), which is defined as 

 { }( )( ) , , , ,p HFdp p a U
p

ρ
ρ ω

∂
Δ = − ∈

∂∫
rr   (12) 

where the limits of integration are discussed in Sec. 3. To ensure a fair comparison of the 

electron density difference across all three tuning procedures, we select an isovalue ( cρΔ ) of 

0.002 e-/Å3 for HFa  and normalize the isovalues for U and ω according to the overall change in 

partial charge on the metal: 

 { }
( ) ( ) , ,
( ) ( )
c Fe

c HF Fe HF

p q p p U
a q a

ρ
ω

ρ
Δ Δ

= ∈
Δ Δ

 . (13) 

Across all three methods, we observe loss of electron density from the area directly surrounding 

the Fe center and gain of electron density in the areas surrounding the O atoms, corroborating 

our initial observations of increasing Fe partial charge and decreasing Fe 3d AO occupancies. 
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Slight differences nevertheless arise in how the additional electron density is distributed within 

the H2O ligands. Increasing aHF and ω (Figure 3, center and right) results in a spatially uniform 

increase in the electron density around the O atoms with concomitant delocalization of charge 

away from the H atoms, whereas increasing U (Figure 3, left) appears to localize the additional 

electron density to the O atom and does not affect the electron density around the H atoms. This 

distinct behavior in DFT+U should be expected, as the “+U” potential shift applied only affects 

molecular orbitals that contain 3d atomic orbital character59 (here, Fe-centered or Fe-O 

hybridized states). Thus, on preliminary test cases, all three strategies remove density 

delocalization error from approximate DFT by localizing density onto ligand atoms, consistent 

with previous results obtained on HF exchange71. Nevertheless, further examples will establish 

the universality of this observation.  

 

Figure 3. Isosurfaces of the U (left), global HF exchange (center), and ω (right) charge 
difference for the octahedral [Fe(H2O)6]2+ complex, with geometric structure shown as sticks. 
The isovalues employed (see main text for derivation) are 0.00097 e-/Å3 (left), 0.002 e-/Å3 
(center), and 0.0015 e-/Å3 (right). Red and blue volumes represent regions of negative (electron 
density lost) and positive (electron density gained) electron density difference, respectively.  

 

4b. Ligand Diffuseness and Electronegativity Effects 

 A commonly-invoked depiction of self-interaction error (SIE) in transition-metal complexes 

is derived from the argument that 3d electrons are well-localized and thus subject to larger 
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magnitudes of SIE than extended states, e.g. in bulk metals or in delocalized covalent bonding in 

molecular systems. One conceivable argument for why charge transfer is observed instead from 

the metal to oxygen ligands in the previously described hexa-aqua system (Sec. 4a) is that the 

2p- and 1s-derived molecular orbitals of water are much more well-localized than the 3d states of 

the central iron atom. This relative localization of the two constituents is evident from the 

characteristic length, defined as the largest distance from the atomic center to the 0.001 e 

isosurface, of 2p and 3d orbitals for O and Fe atoms, of 1.7 Å and 1.9 Å, respectively (Figure 4). 

Such an observation motivates comparison to ligands with orbitals substantially more diffuse 

than 3d states of the iron atom, creating scenarios where the metal valence states are truly well-

localized with respect to surrounding ligands. If the effect of relative diffuseness dominates, we 

may expect the direction of charge localization with approximate SIE correction (i.e., DFT+U 

and global or range-separated hybrid tuning) to reverse.  

 

Figure 4. Schematic of increasing nl subshell atomic orbital size from left to right: 2p, 3p, 3d, 
4p, and 5p with annotated characteristic length and direction from the center of the atom to the 
furthest point on the 0.001 e- isosurface, as described in the main text.  

 Thus, we compare the iron hexa-aqua complex with the series of octahedral [Fe(H2X)6]2+ 

complexes where X=S, Se, and Te corresponding to increasingly heavy group 16 elements with 

valence 3p, 4p and 5p orbitals, respectively. We again quantify the increasing diffuseness of the 
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underlying AOs of each of these ligands in terms of the characteristic length, which is 2.2 Å for 

3p orbitals in S, 2.4 Å for 4p in Se, and 2.6 Å for 5p in Te, all larger than the 1.9 Å 3d orbitals of 

Fe (Figure 4). This series of weak field ligands gives structurally stable complexes in DFT gas 

phase geometry optimizations, despite only [Fe(H2O)6]2+ being stable experimentally130 due to 

increasingly weak Fe-X bonds for heavier substituents. We first note that the Fe partial charge 

computed at the GGA level of theory (Figure 5) decreases (i.e., becomes more neutral) as we 

proceed down the group, consistent with the trend in ligand electronegativity χ (Pauling scale – 

O: 3.4 > S: 2.6 > Se: 2.6 > Te: 2.1). This increasingly favorable, charge localization onto the 

metal may alternatively be interpreted through increased energetic overlap between the Fe 3d 

states and surrounding ligand states (Supporting Information Figure S1). Thus, within a constant 

functional choice, relative localization of the 3d states with respect to surrounding atoms does 

encourage 3d delocalization to the ligands.  

 

Figure 5. Fe GGA reference partial charge for HF exchange (BLYP/LBS, blue circles), U 
(PBE/PWBS, red squares) and ω (PBE/LBS, gray triangles) for octahedral [Fe(H2X)6]2+ 
complexes where X = O, S, Se, Te. 

 Sensitivity ( pS ) of the partial charge on iron with respect to functional tuning parameter, p, 

(i.e., U in DFT+U, ω in range correction, or aHF in global HF exchange), however, likely 
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provides a more useful guide to interpret electron delocalization with respect to the GGA 

reference. Focusing on the direction of charge localization with functional tuning for each 

complex, we observe that all tuning approaches applied to all substituent ligands lead to 

increased charge localization away from the metal (Figure 6). For increasingly diffuse ligand 

orbitals, the positive sensitivities do not change sign and instead increase in magnitude down the 

group for all tuning methods (Figure 6). The largest increase observed for ω-tuning from 0.25 

e/bohr-1 for O to 0.64 e/bohr-1 for Te may be rationalized by the additive effect of increased bond 

length (2.1 Å for Fe-O vs. 3.1 Å for Fe-Te) that does not affect the more modest increases in 

global hybrid tuning sensitivities from 0.33 e/HFX to 0.67 e/HFX (Figure 6 and Supporting 

Information Table S4). The DFT+U sensitivities are even less element-sensitive, increasing only 

to 0.23 e/10 eV of U for Te vs. 0.13 e/10 eV of U for O. Overall, there is an apparent qualitative 

inverse correlation between the GGA partial charge and pS , but the trend across the full data set 

employed in this work is very weak (R2=0.08-0.14, see Supporting Information Table S4 and 

Figure S2).  
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Figure 6. Fe partial charge sensitivity to changes in U (e/eV x10, top), HF exchange (e/HFX, 
middle), and ω (e/bohr-1, bottom) for the octahedral [Fe(H2X)6]2+ complexes where X = O, S, Se, 
Te. The y-axes are the same for the global and range separated hybrid variations, whereas the 
DFT+U sensitivities have been multiplied by 10 due to differences in units and span a range half 
as large. 

 Finally, to verify that the observed effects are specific only to the diffuseness of the bonding 

ligand atom orbitals and hence generalizable to other complexes not pursued in this work, we 

also included negatively charged four-coordinate polychalcogenide complexes ([Fe(X4)2]2-, X = 

O, S, Se) in our data set (structures shown in Figure 1). The qualitative partial charge (i.e., O > S 

> Se) and parameter sensitivity (i.e., O < S < Se) orderings are obeyed; quantitatively partial 

charges are lower on iron and sensitivities are about 10% higher overall but show less elemental-

dependence (Supporting Information Table S4). The reduced dependence on element identity can 

likely be traced to 0.1-0.2 Å shorter bond distances in the polychalcogenide complexes (e.g., Fe-

Se of 2.6 Å vs. 2.8 Å in the octahedral complex) that correspond to stronger coordination even 

for heavier elements (Supporting Information Table S2). Thus, we can motivate the extension of 

our observations of charge localization onto ligand atoms beyond octahedral complexes to other 

coordination environments. 

 As we have attributed differences in absolute partial charges at the GGA level of theory to 

differences in ligand electronegativity, it may be proposed that the positive sign of pS  values can 

be partially attributed to positive ligand-metal electronegativity differences among the complexes 

considered above (χ=1.8 for Fe). To assess the validity of this hypothesis, we constructed a 

somewhat artificial high-spin octahedral [Fe(AlH3)6]2+ complex in which the direct ligand atom 

(Al, χ=1.6) electronegativity is less than the iron electronegativity. As this complex dissociates 

upon gas phase geometry optimization, we modify the optimized geometry of [Fe(NH3)6]2+ by 

assigning bond lengths equal to the sum of covalent radii131 (2.7 Å for Fe-Al and 1.5 Å for Al-H). 
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Consistent with the negative ligand-metal electronegativity difference and electron-deficient 

nature of AlH3, we indeed observe a negative Fe partial charge of -1.0 at the GGA level of 

theory. Positive pS  values of 0.16 e/10 eV of U, 0.12 e/HFX, and 0.26 e/bohr-1, which 

correspond to the negative Fe partial charge becoming more neutral and charge localizing onto 

the AlH3 ligands, are obtained for DFT+U, global- and range-separated-hybrid tuning, 

respectively (see Supporting Information Table S4). Compared to a hexa-aqua complex reference 

(see Sec. 4a), these sensitivities are reduced for the global-hybrid tuning, but they are 

comparable or larger for the DFT+U or range-separated hybrid methods. Thus, we confirm that 

the delocalization of charge from metal to ligand with three diverse functional tuning strategies is 

observed regardless of ligand orbital diffuseness or substituent atom electronegativity.  

4c. Non-equilibrium Complexes 

 Another manifestation of approximate DFT failures is in the unphysical delocalization of 

charge near the dissociation limit9 (e.g., in NaCl9, 85, CH+85 and CO-1), resulting in spurious 

fractional charges, which may be attributed to either self-interaction error or to static-correlation 

error. SIE correction schemes such as the Perdew-Zunger approach48 have been noted to 

eliminate such errors at dissociation at the cost of worsening equilibrium bond-length and 

density-derived properties9. It is also known that approximate SIE corrections, such as 

incorporation of an admixture of HF exchange, may increase static correlation error (SCE), 

owing to the higher SCE in HF, as quantified through fractional spin error4. Thus, the interplay 

of SIE and SCE motivates our examination of test cases with metal-ligand bond distances 

displaced from equilibrium values. In addition to the weak-field, hexa-aqua system (Sec. 4a), we 

consider the [Fe(CO)6]2+ complex with strong-field π-acceptor ligands as a case with contrasting 

metal-ligand bonding. 
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 As we increase the bond length in both complexes away from equilibrium values of 2.1 and 

2.3 Å for the Fe-O and Fe-C bonds, respectively, the Fe partial charge computed at the GGA 

level of theory passes through a maximum value at around r = 1.2re before starting to decrease, 

with this effect slightly reduced for the PWBS partial charges with respect to the LBS GGA 

values (Figure 7). In the absence of SIE, we would expect the metal partial positive charge to 

increase with increasing bond length due to decreasing ligand-metal electron donation. This 

expectation is confirmed by CASPT2 q(Fe) partial charges of 2.0 in a stretched water complex 

with r = 1.5re, i.e. full charge delocalization away from the less electronegative Fe center. If the 

effect is SIE-dominant due to heterolytic dissociation, we may expect sensitivity for all three 

methods to increase with increasing bond length. Nevertheless, we may also anticipate the 

divergence in the three methods for SIE-correction to become more apparent for stretched bonds, 

as DFT+U is inherently short-range, acting only on metal states regardless of the placement of 

coordinating atoms, whereas the nature of range-separation means that separated ion interactions 

are increasingly treated with HF exchange as the atoms dissociate.  

 

Figure 7. Dependence of Fe reference partial charge for HF exchange (BLYP/LBS, blue circles), 
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U (PBE/PWBS, red squares) and ω (PBE/LBS, gray triangles) with relative bond length (r/re) for 
[Fe(H2O)6]2+ (top) and [Fe(CO)6]2+ (bottom), with respect to the equilibrium bond length (re) 
computed for the B3LYP equilibrium geometry.  

 If these functional tuning procedures are efficient mitigators of SIE, we thus expect pS  to not 

only remain positive but increase as bonds are stretched away from equilibrium values, further 

extending what is encompassed by the near-universality of ligand charge localization as DFT+U 

and global- or range-corrected hybrid methods are applied. Indeed, we observe increasingly 

positive charge-sensitivities in both the hexa-aqua and hexa-carbonyl complexes as bonds are 

stretched by up to 50% beyond equilibrium values (Figure 8). All three methods exhibit 

comparable positive bond-length dependence of parameter sensitivity within 1.2re (1.3re) for the 

hexa-aqua (hexa-carbonyl) complex. For longer bond lengths, the three methods show divergent 

behavior, with the sensitivity of range-separation increasing dramatically at 1.5re to as much as 

4Sp(re) (i.e., 0.25 e/au-1 at equilibrium vs. 1.03-1.05 e/au-1 for either complex). DFT+U 

sensitivities demonstrate the least geometric dependence, at around 2-2.5Sp(re) (i.e., 0.07-0.1 e/10 

eV of U vs. 0.2 e/10 eV of U), which can be rationalized as a combination of i) greater flexibility 

for electron delocalization in the PWBS and ii) the metal-centered nature of the DFT+U 

correction applied. Direct inclusion of intersite terms in DFT+U132-133 to address metal-ligand 

bonding could produce more comparable behavior to hybrid functionals. Global-hybrid exchange 

demonstrates intermediate sensitivity increases at around 3Sp(re), (i.e., 0.29-0.33 e/HFX vs. 0.94-

1.04 e/HFX, sensitivities for all complexes are provided in Supporting Information Table S4). 

Upon bond compression, metal charges generally become more negative and sensitivities are 

conversely reduced (see Figure 8 and Supporting Information Text S1). 



24 

 

 

Figure 8. Dependence of relative Fe partial charge sensitivity (Sp/Sp(re)) for HF exchange (blue 
circles), U (red squares), and ω (gray triangles) with relative bond length (r/re) for [Fe(H2O)6]2+ 
(top) and [Fe(CO)6]2+ (bottom). Dashed black lines indicate the equilibrium sensitivity and bond 
lengths (i.e., Sp/Sp(re) = 1 and r/re = 1). The equilibrium bond length used in all cases is obtained 
from the B3LYP equilibrium geometries.  

 The observation of increasing sensitivity with bond length for global hybrids is consistent 

with previous observations of increasing differences in partial charges at the GGA and HF levels 

of theory with bond length in heterolytic dissociation of NaCl9 and CH+85. Hence, these 

observations of both electronegativity- and ligand-derived localization are likely transferable 

beyond the transition metal complexes studied in this work. Nevertheless, despite increasing 

sensitivity with increasing bond length, the methods employed would have to be tuned beyond 

typically-applied values to recover CASPT2 partial charges on the iron in the stretched bond 

case. Our results also highlight the relative impact of approximate SIE corrections on the overall 

electron density: global and range-separated corrections within the realm of those under 

consideration may change partial charges on metal centers by as much as 0.6 e, leading to a 

substantial difference in SIE-derived delocalization, but DFT+U sensitivities correlate to more 

modest changes in the density over values of U typically employed (i.e., 5-10 eV).  
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4d. Effect of Metal Electron Configuration 

 Having determined the effects of ligand identity and bond length on charge delocalization in 

a wide and representative array of Fe(II) complexes, we now turn our attention to the electron 

configuration of the central metal atom by examining paradigmatic early (Ti(II), d2) and late 

(Ni(II), d8) octahedral transition metal complexes with both strong-field CO and weak-field NH3 

or H2O ligands (structures shown in Figure 1). Again, positive partial charges and sensitivities, 

pS , are observed for these complexes with one exception, [Ti(CO)6]2+, where the sensitivity is 

instead found to be weakly negative due to the partial charge scheme employed (see Supporting 

Information Text S2).  

 One might expect the Fe(II) complexes to be maximally sensitive to charge redistribution due 

to the half-filled character of the 3d states. Instead, we observe that pS  for global- and range-

separated hybrid tuning increases with d-electron count (i.e., ω-tuning and HF exchange Sp 

values of ca. 0.20 e/bohr-1 and 0.25 e/HFX for Ti < 0.25 e/bohr-1 and 0.29-0.38 e/HFX for Fe < 

0.3-0.4 e/bohr-1 and 0.42-0.55 e/HFX for Ni, respectively) and shows greater metal d-filling-

sensitivity than ligand-strength-sensitivity (Figure 9). Although this trend of doubling charge 

sensitivities from Ti to Ni is clearest with ω-tuning, unlike the group 16 elements, there is no 

additive size effect here, as all of the octahedral complexes considered have comparable metal-

ligand bond lengths in the range of 2.1-2.3 Å. In contrast to the hybrid tuning strategies, DFT+U 

shows more limited metal-dependence, with comparable sensitivities in the range of 0.12-0.15 

e/10 eV of U, except for carbonyl complexes that exhibit reduced sensitivities. Despite strong 

metal-dependent effects, subtler ligand-derived trends in previously observed for Fe(II) (CO < 

H2O < NH3) are largely preserved for Ni(II) and Ti(II) complexes (Figure 9). Thus, the positive 

sign for sensitivities across the periodic table suggests that general trends we have observed for 
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Fe(II) complexes likely hold for the remainder of the first-row transition metals.  

 

Figure 9. Ti, Fe, and Ni partial charge sensitivity to changes in U (e/eV x10, top), HF exchange 
(e/HFX, middle), and ω (e/bohr-1, bottom) for octahedral [M(L)6]2+ complexes where L = H2O, 
NH3, or CO. The y-axis ranges are the same for the global and range-separated hybrid variations, 
whereas the DFT+U sensitivities have been multiplied by 10 due to differences in units and span 
a range half as large. 

 Previously, some of us observed71 positive pS  for HF exchange across a series of Fe(II) and 

Fe(III) low-spin (LS) and high-spin (HS) complexes, suggesting that charge delocalization away 

from the metal is generalizable across oxidation and spin states as well. Based on the findings in 

the present work, we may expect similar trends for DFT+U and range-separation. In the same 

study71, sensitivities were larger in the LS state than the HS state (i.e., the LS state loses charge 

faster than the HS state) across the majority of Fe(II) and Fe(III) complexes studied. Considering 

that the HS complexes had significantly longer metal-ligand bond lengths than the LS 

complexes, this result contradicts expectations based solely on geometry for a fixed electronic 

state (as previously illustrated in Figure 8), suggesting the importance of the metal’s electron 

configuration. We thus expanded our molecule set to include a LS hexa-aqua Fe(II) complex 
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computed at the HS equilibrium geometry. We indeed obtain low-spin Sp values roughly 50% 

higher than high-spin values consistently for all three tuning methods (see Supporting 

Information Table S4). Such an observation can be rationalized now in the context of our 

observations on increasing sensitivity with increasing d filling. Rather than filling alone, it is the 

number of bonding orbitals occupied in complexes (i.e., the main distinguishing feature between 

HS and LS complexes for a given metal and oxidation state) that drives increased sensitivities. 

Although no one heuristic (e.g., ligand field strength or electronegativity) explains all trends in 

charge redistribution with functional tuning, all of these cases together serve to highlight the 

universality of charge localization toward ligands and away from the metal in transition metal 

complexes regardless of SIE-correction strategy.  

4e. Curvature Energy Corrections and Density or Magnetization Effects 

 In addition to reproducing benchmarks or experimental values, functional-tuning strategies 

are increasingly employed to reproduce piecewise linearity, as indicated by highest-occupied and 

lowest-unoccupied molecular orbital (HOMO and LUMO) energies that correspond to total 

energy IPs and EAs, respectively. This approach is widely-employed in the context of optimally-

tuned range-separated hybrids34, but some of us recently demonstrated that DFT+U may also 

recover piecewise linearity59. We now quantify the relative extent to which the integer electron 

endpoint charge density is impacted by DFT+U, range-separation, or global hybrid exchange 

tuning that recovers piecewise linearity between integer-electron endpoints. We apply a 

simplified tuning procedure for all three tuning parameters in which the discrepancy between the 

LUMO and total-energy electron affinity of M(III) complexes is set to zero. For our M(II) 

complexes, we can thus write: 

 3
LUMO 2 3
M

LUMO error (M ) (M )E Eε +
+ += − +  , (14) 
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where the energies and eigenvalues are evaluated at the M(II) optimized geometries. The 

motivation for employing LUMO error alone to identify tuning parameters is two-fold: i) HOMO 

and LUMO errors are typically comparable magnitude and corrected with the same efficiency, 

otherwise necessitating a variable-parameter approach to recover piecewise linearity59, 134 and ii) 

DFT+U tuning efficiencies are more sensitive to the LUMO than the HOMO59. To simplify the 

notation throughout, we use p* to represent the value of tuning parameter { }, ,HFp a U ω∈  

projected to eliminate the LUMO error based on LUMO error tuning trends extrapolated from 

the parameter ranges studied throughout this work (see Sec. 3 and Supporting Information Figure 

S4). In doing so, we aim to answer a few outstanding questions regarding the approximate 

correction of SIE: i) although piecewise linearity is essential for correct orbital energies, how 

does its recovery also impact integer-electron count electron densities and magnetizations with 

respect to accurate WFT references? ii) does recovering piecewise linearity require comparable 

tuning parameters between differing methods? iii) what is the overall relative effect of each 

tuning method on the ground state density upon recovery of piecewise linearity?  

 First, we examine the Fe(II)(NH3)6 and Fe(II)(H2O)6 complexes for which we have reference 

CASPT2 electron densities and magnetizations. Recall that GGA Fe partial charges for the hexa-

aqua complex ca. 1.49-1.52 are already in good agreement with CASPT2 (q = 1.52), whereas the 

GGA partial charges (ca. 1.37 on Fe) for the hexa-ammine complex are in poor agreement 

(CASPT2 q = 1.62). Considering also magnetic moments reveals that the partial charges alone 

do not guarantee good agreement with the WFT reference, as GGA hexa-aqua Fe magnetic 

moments (3.66-3.72 µB) underestimate the CASPT2 reference (3.88 µB). The hexa-ammine 

magnetic moments similarly underestimate (3.64-3.72 µB) the CASPT2 reference (3.87 µB). The 

underestimation of magnetic moments may be rationalized as a consequence of SIE in mid-row 
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transition metal complexes. Namely, both low-energy majority- and minority-spin states 

participate in bonding with ligand states, but these are the solely occupied states for the minority-

spin in HS complexes. Such states may be envisioned as delocalized across the metal-ligand 

bond but contributing partially to the magnitude of the magnetic moment on the metal. When 

approximate SIE corrections localize electron density to the ligands, this affects a higher 

proportion of minority-spin molecular states, and all three tuning procedures thus increase the 

magnetic moment (Supporting Information Table S6). Alternatively, one may have anticipated 

that the approximate SIE correction could have reduced the magnetic moment by localizing 

density solely to the metal, but none of the three methods exhibited this behavior on the systems 

studied in this work. Sensitivities of magnetic moments are comparable to the sensitivities of 

partial charges for each method with about 0.33-0.34 µB/HFX for global HF exchange, 0.24 

µB/10 eV of U in DFT+U, and 0.25-0.26 µB/bohr-1 in range-separated hybrid tuning for both 

complexes.   

 We now identify the extent to which DFT Fe partial charges and magnetic moments may be 

simultaneously matched to CASPT2 values, where the latter are chosen to represent the correct 

SIE-free electronic structure properties. For each tuning approach, we compute the root-sum-

squared (RSS) error of these two quantities for an arbitrary tuning parameter, i:  

 RSSi = [q(Fe)i −q(Fe)CASPT2 ]
2 +[m(Fe)i −m(Fe)CASPT2 ]

2   (15) 

where the first term represents the Fe partial charge error and the second term represents the Fe 

magnetic moment error. It is useful to assess the RSS error at several points: i) GGA with either 

the PWBS or LBS, ii) the point of minimum RSS error for each tuning approach, and iii) the 

point at which LUMO error has been eliminated via the relevant tuning approach. For the two 

cases considered, GGA RSS errors are generally maxima, and all tuning strategies reduce the 
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RSS errors (Figure 10). The overall minima are near zero for global- or range-separated hybrid 

tuning on the hexa-ammine complex, albeit at values not typically employed in electronic 

structure calculations of around 65% or 0.62 bohr-1, respectively, whereas DFT+U RSS errors do 

not approach zero within a range of reasonable U values (i.e., < 10 eV, see Figure 10). DFT+U 

diverges slightly from the other two approaches by modifying the charge density more slowly.  

 
 
Figure 10. RSS partial charge and magnetization error for Fe(II)(NH3)6 (left) and Fe(II)(H2O)6 
(right) as a function of tuning parameter. Results for DFT+U (black line), global HF exchange 
(red line), and range-separated hybrids (green line) are shown with axes corresponding to units 
for the DFT+U shown at top and hybrid functionals at bottom. All computed points are shown as 
open circles with a cubic spline, the point that corresponds to zero LUMO error is shown as a 
large filled circle, and the point that is the minimum on each curve is shown as an X. 

 Conversely, already good GGA Fe partial charges that worsen with functional tuning in the 

hexa-aqua complex mean that although magnetic moments are improved, overall RSS errors are 

lower for DFT+U because it worsens partial charges at a slow rate as it improves magnetic 

moments, for an optimal agreement near a U of 5 eV. Finally, we consider whether the point of 

minimum density error coincides with the point of LUMO error elimination for the three 

methods. Overall, we find that range-separation tuning is the most efficient at eliminating 

LUMO energetic errors but comparably efficient to global hybrid tuning at eliminating density 

errors. Thus, for cases such as the hexa-ammine complex where GGA hybridization density 
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errors are significant, the curvature-corrected point leaves behind the most density error for 

range-separated hybrid tuning followed by DFT+U and global-hybrids. In the hexa-aqua case, 

RSS errors are closer to their minima values at energy-correction points but mainly due to a 

balance of increasing errors in partial charges with still-reducing errors in magnetic moments. 

These two cases are far from all-encompassing but highlight the likelihood that density-based 

delocalization error corrections may not coincide with those that eliminate energy errors, which 

may be relevant for prediction of magnetic moments or other observables that depend upon the 

ground state electron density.  

 We now compare the equivalence of the three tuning approaches on both LUMO error 

corrections and density changes over a 15-molecule subset of the original 32 complexes, which 

includes the full group 16 series, ammonia, phosphine, carbonyl, chloride iron complexes as well 

as the ammonia, water, and carbonyl titanium complexes (Supporting Information Tables S7-

S8). The largest GGA LUMO errors are observed for small, weak-field ligands (e.g., 

Fe(II)(H2O)6), consistent with previous work59, and the smallest are observed for electron-rich 

molecules (e.g., Fe(II)(H2Te)6). For equilibrium complexes, higher LUMO error generally led to 

higher p* values for LUMO error elimination, e.g. U of 10.5 eV, HF exchange of 52% or ω of 

0.3 bohr-1 for Fe(II)(H2O)6 versus considerably smaller values of U of 4 eV, 32% HF exchange, 

or ω of 0.25 bohr-1 for Fe(II)(H2Te)6. The range of tuning parameters to eliminate LUMO errors 

across complexes for each method, U* from 4 eV to 15 eV, aHF* from 0.29 to 0.77, and ω* from 

0.13 to 0.36 bohr-1 may be used to establish ratios for tuning parameters (Supporting Information 

Figure S5). Moderate correlations between p* values are observed (R2=0.34 between DFT+U 

and global hybrids, R2=0.42 between ω-tuning and global hybrids, See Supporting Information 

Figure S5). These comparisons suggest that DFT+U values near around 5 eV correlate well to 
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the effect of the widely employed 20-25% HF exchange range, and that generally a range of 

around 12 eV of U correlates well to tuning HF exchange from 0 to 100%. Conversely, the small 

ranges over which ω-tuning eliminates LUMO errors suggests that increasing ω to 0.33 bohr-1 is 

equivalent to 100% global HF exchange for the systems considered (see Supporting Information 

Figure S5). Thus, comparison of rates of piecewise-linearity recovery provide reasonable values 

relating parameters employed in one tuning approach (e.g., DFT+U) to another (e.g., global 

hybrid tuning). 

 Having considered the rate at which each method eliminates LUMO errors, we now may 

compare how much each method alters the electronic structure by evaluating the metal (M) 

electron loss at the point of curvature elimination ( *
MqΔ ). We obtain *

MqΔ  by multiplying the 

linearly-approximated sensitivity with the parameter that eliminates LUMO error: 

 *
M( ) *pq p S pΔ =  , (16) 

and compare the range of values obtained across methods and complexes. A weak correlation 

between p* and Sp leads to greater correlation of *
MqΔ  between tuning procedures than was 

obtained for p* (R2=0.76-0.90, see Supporting Information Figure S6). An examination of the 

obtained correlations reveals a 0.9:1.0 ratio for charge-loss from DFT+U vs. global HF exchange 

and 0.5:1.0 for ω-tuning vs. HF exchange. The largest charge losses with global exchange are 

observed for stretched iron hexa-aqua and hexa-carbonyl complexes at around 0.36 e and 0.24 e, 

respectively (Supporting Information Table S9).  
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Figure 11. Comparison of Fe partial charge loss at point of LUMO error elimination (ΔqFe* in e) 
for U (red bars), HF exchange (blue bars), and ω (gray bars)-tuning in representative octahedral 
Fe(II) complexes in order of increasing ligand-field strength from left to right: Cl-, H2O, NH3, 
PH3, and CO ligands.  

 We may also interpret the shift in charge density through the nature of the chemical bonding 

in the complexes. Namely, increasing ligand field strength paradoxically corresponds to 

decreased electron density removal from the metal to the ligand (Figure 11). This observed trend 

is strongest for global hybrid and DFT+U tuning, with the smaller overall values of charge loss 

for range-separated hybrids leading to more complex-independent values (see Figure 11 and 

Supporting Information Table S9). Although some of us have previously identified59 that LUMO 

error is generally smaller for strong-field than weak-field ligands, the diminishing ΔqFe* 

observed here with increasing ligand field strength cannot be explained by this effect alone, as 

the p* values are not monotonically decreasing (see Supporting Information Table S6b). It is also 

not evident that this trend is consistent with the extent of density delocalization error observed in 

these complexes. Beyond ligand field theory alone, stronger ligands correspond to increased 

covalency in the M-L bond, which is overestimated by semi-local DFT functionals, as 

exemplified by more neutral partial charges for the hexa-ammine complex than hexa-aqua, 

bringing the former into worse agreement with CASPT2 references. Thus, these results suggest 

that density-derived errors in energy-based functional tuning may over-localize the density for 
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weak M-L bonds but underlocalize the density for strong M-L bonds. This further motivates the 

development of strategies that separately correct density-derived and energetic self-interaction 

errors. It is not evident from this preliminary work that 100% exact exchange is the optimal 

solution for improving density-driven errors as it appears to overcorrect density errors evidenced 

by semi-local functionals, but more flexible treatments of correlation, for instance, could be 

paired with full exact exchange to simultaneously improve both energetic and density 

delocalization error. 

5. Conclusions 

We have compared three diverse strategies for mitigating self-interaction error within 

approximate DFT, i.e., DFT+U, global hybrid tuning, and range-separated hybrid tuning, and we 

identified that these three methods have qualitatively equivalent behavior across the 32 transition 

metal complexes considered in this work. Although SIE is known to increase unphysical electron 

delocalization, the universal nature of electron localization by SIE-reducing methods from the 

metal to the ligand had not yet been noted. Indeed, regardless of valence orbital diffuseness (i.e., 

from 2p to 5p), ligand electronegativity (i.e., from Al to O), basis set (i.e., plane wave versus 

localized basis set), metal (i.e., Ti, Fe, Ni) and spin state, or tuning method, we consistently 

observe substantial charge loss at the metal and gain at ligand atoms (ca. 0.3-0.5 e).  

We further distinguished energy-derived delocalization error, i.e., deviations from 

piecewise linearity, from density-derived errors, as observed through comparison of metal-

centered partial charges and magnetic moments for representative complexes from approximate 

DFT versus CASPT2 references. We observed increased density errors with ligand field strength 

or hybridization but simultaneously decreased overall impact of the tuning methods on the 

electron density. Generally, the minimum error in partial charges and magnetic moments was 
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observed to occur at higher tuning parameters, particularly for range-separation, than those that 

eliminated energy delocalization error alone. These observations suggest that multi-faceted error 

correction approaches that separately treat density delocalization and energetic errors are needed 

in order to recover both correct density and magnetization properties at integer electrons and 

molecular orbital energies. The development of such flexible corrections for transition metal 

chemistry is underway within our group. 

 

ASSOCIATED CONTENT 

Supporting Information. Coordinates of optimized geometries; list of pseudopotentials used; 

list of complexes studied; comparison of selected DFT and CASPT2 partial charges and spin 

densities; metal and ligand projected densities of states for selected complexes; Bader and NPA 

charges at all values of tuning parameters; sensitivity vs. GGA partial charge; comparison of 

Bader vs. NPA partial charges and further discussion; LUMO error tuning details and 

comparison among tuning methods. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author 

*email: hjkulik@mit.edu phone: 617-253-4584 

Notes 

The authors declare no competing financial interest.  

 

ACKNOWLEDGMENT 



36 

 

The authors acknowledge partial support by the National Science Foundation under grant 

number ECCS-1449291. H.J.K. holds a Career Award at the Scientific Interface from the 

Burroughs Wellcome Fund. This work was carried out in part using computational resources 

from the Extreme Science and Engineering Discovery Environment (XSEDE), which is 

supported by National Science Foundation grant number ACI-1053575. The authors thank Adam 

H. Steeves for providing a critical reading of the manuscript. 

 

REFERENCES 

1. Mori-Sánchez, P.; Cohen, A. J.; Yang, W., Many-Electron Self-Interaction Error in 
Approximate Density Functionals. J. Chem. Phys. 2006, 125, 201102. 
2. Ruzsinszky, A.; Perdew, J. P.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E., Density 
Functionals That Are One- and Two- Are Not Always Many-Electron Self-Interaction-Free, as 
Shown for H2+, He2+, LiH+, and Ne2+. J. Chem. Phys. 2007, 126, 104102. 
3. Haunschild, R.; Henderson, T. M.; Jiménez-Hoyos, C. A.; Scuseria, G. E., Many-
Electron Self-Interaction and Spin Polarization Errors in Local Hybrid Density Functionals. J. 
Chem. Phys. 2010, 133, 134116. 
4. Cohen, A. J.; Mori-Sánchez, P.; Yang, W., Insights into Current Limitations of Density 
Functional Theory. Science 2008, 321, 792-794. 
5. Schmidt, T.; Kümmel, S., One- and Many-Electron Self-Interaction Error in Local and 
Global Hybrid Functionals. Phys. Rev. B 2016, 93, 165120. 
6. Kim, M.-C.; Sim, E.; Burke, K., Understanding and Reducing Errors in Density 
Functional Calculations. Phys. Rev. Lett. 2013, 111, 073003. 
7. Zheng, X.; Liu, M.; Johnson, E. R.; Contreras-García, J.; Yang, W., Delocalization Error 
of Density-Functional Approximations: A Distinct Manifestation in Hydrogen Molecular Chains. 
J. Chem. Phys. 2012, 137, 214106. 
8. Johnson, E. R.; Otero-de-la-Roza, A.; Dale, S. G., Extreme Density-Driven 
Delocalization Error for a Model Solvated-Electron System. J. Chem. Phys. 2013, 139, 184116. 
9. Ruzsinszky, A.; Perdew, J. P.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E., Spurious 
Fractional Charge on Dissociated Atoms: Pervasive and Resilient Self-Interaction Error of 
Common Density Functionals. J. Chem. Phys. 2006, 125, 194112. 
10. Dutoi, A. D.; Head-Gordon, M., Self-Interaction Error of Local Density Functionals for 
Alkali–Halide Dissociation. Chem. Phys. Lett. 2006, 422, 230-233. 
11. Bally, T.; Sastry, G. N., Incorrect Dissociation Behavior of Radical Ions in Density 
Functional Calculations. J. Phys. Chem. A 1997, 101, 7923-7925. 
12. Zhang, Y.; Yang, W., A Challenge for Density Functionals: Self-Interaction Error 
Increases for Systems with a Noninteger Number of Electrons. J. Chem. Phys. 1998, 109, 2604-
2608. 



37 

 

13. Johnson, B. G.; Gonzales, C. A.; Gill, P. M. W.; Pople, J. A., A Density Functional Study 
of the Simplest Hydrogen Abstraction Reaction. Effect of Self-Interaction Correction. Chem. 
Phys. Lett. 1994, 221, 100-108. 
14. Mori-Sánchez, P.; Cohen, A. J.; Yang, W., Localization and Delocalization Errors in 
Density Functional Theory and Implications for Band-Gap Prediction. Phys. Rev. Lett. 2008, 
100, 146401. 
15. Cohen, A. J.; Mori-Sánchez, P.; Yang, W., Fractional Charge Perspective on the Band 
Gap in Density-Functional Theory. Phys. Rev. B 2008, 77, 115123. 
16. Tozer, D. J.; De Proft, F., Computation of the Hardness and the Problem of Negative 
Electron Affinities in Density Functional Theory. J. Phys. Chem. A 2005, 109, 8923-8929. 
17. Teale, A. M.; De Proft, F.; Tozer, D. J., Orbital Energies and Negative Electron Affinities 
from Density Functional Theory: Insight from the Integer Discontinuity. J. Chem. Phys. 2008, 
129, 044110. 
18. Peach, M. J. G.; Teale, A. M.; Helgaker, T.; Tozer, D. J., Fractional Electron Loss in 
Approximate DFT and Hartree–Fock Theory. J. Chem. Theory Comput. 2015, 11, 5262-5268. 
19. Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Density-Functional Theory for 
Fractional Particle Number: Derivative Discontinuities of the Energy. Phys. Rev. Lett. 1982, 49, 
1691-1694. 
20. Yang, W.; Zhang, Y.; Ayers, P. W., Degenerate Ground States and a Fractional Number 
of Electrons in Density and Reduced Density Matrix Functional Theory. Phys. Rev. Lett. 2000, 
84, 5172-5175. 
21. Vydrov, O. A.; Scuseria, G. E.; Perdew, J. P., Tests of Functionals for Systems with 
Fractional Electron Number. J. Chem. Phys. 2007, 126, 154109. 
22. Perdew, J. P.; Levy, M., Physical Content of the Exact Kohn-Sham Orbital Energies: 
Band Gaps and Derivative Discontinuities. Phys. Rev. Lett. 1983, 51, 1884-1887. 
23. Sham, L. J.; Schlüter, M., Density-Functional Theory of the Energy Gap. Phys. Rev. Lett. 
1983, 51, 1888-1891. 
24. Sagvolden, E.; Perdew, J. P., Discontinuity of the Exchange-Correlation Potential: 
Support for Assumptions Used to Find It. Phys. Rev. A 2008, 77, 012517. 
25. Mori-Sanchez, P.; Cohen, A. J., The Derivative Discontinuity of the Exchange-
Correlation Functional. Phys. Chem. Chem. Phys. 2014, 16, 14378-14387. 
26. Janak, J. F., Proof That dE/dni=Epsilon in Density-Functional Theory. Phys. Rev. B 
1978, 18, 7165-7168. 
27. Stein, T.; Autschbach, J.; Govind, N.; Kronik, L.; Baer, R., Curvature and Frontier 
Orbital Energies in Density Functional Theory. J. Phys. Chem. Lett. 2012, 3, 3740-3744. 
28. Livshits, E.; Baer, R., A Well-Tempered Density Functional Theory of Electrons in 
Molecules. Phys. Chem. Chem. Phys. 2007, 9, 2932-2941. 
29. Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R., Excitation Gaps of Finite-Sized 
Systems from Optimally Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput. 
2012, 8, 1515-1531. 
30. Stein, T.; Kronik, L.; Baer, R., Reliable Prediction of Charge Transfer Excitations in 
Molecular Complexes Using Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 
2009, 131, 2818-2820. 
31. Stein, T.; Kronik, L.; Baer, R., Prediction of Charge-Transfer Excitations in Coumarin-
Based Dyes Using a Range-Separated Functional Tuned from First Principles. J. Chem. Phys. 
2009, 131, 244119. 



38 

 

32. Srebro, M.; Autschbach, J., Does a Molecule-Specific Density Functional Give an 
Accurate Electron Density? The Challenging Case of the Cucl Electric Field Gradient. J. Phys. 
Chem. Lett. 2012, 3, 576-581. 
33. Körzdörfer, T.; Brédas, J.-L., Organic Electronic Materials: Recent Advances in the DFT 
Description of the Ground and Excited States Using Tuned Range-Separated Hybrid Functionals. 
Acc. Chem. Res. 2014, 47, 3284-3291. 
34. Autschbach, J.; Srebro, M., Delocalization Error and “Functional Tuning” in Kohn–Sham 
Calculations of Molecular Properties. Acc. Chem. Res. 2014, 47, 2592-2602. 
35. Gledhill, J. D.; Peach, M. J. G.; Tozer, D. J., Assessment of Tuning Methods for 
Enforcing Approximate Energy Linearity in Range-Separated Hybrid Functionals. J. Chem. 
Theory Comput. 2013, 9, 4414-4420. 
36. Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R., Fundamental Gaps in Finite Systems from 
Eigenvalues of a Generalized Kohn-Sham Method. Phys. Rev. Lett. 2010, 105, 266802. 
37. Salzner, U.; Baer, R., Koopmans’ Springs to Life. J. Chem. Phys. 2009, 131, 231101. 
38. Leininger, T.; Stoll, H.; Werner, H.-J.; Savin, A., Combining Long-Range Configuration 
Interaction with Short-Range Density Functionals. Chem. Phys. Lett. 1997, 275, 151-160. 
39. Toulouse, J.; Colonna, F.; Savin, A., Long-Range-Short-Range Separation of the 
Electron-Electron Interaction in Density-Functional Theory. Phys. Rev. A 2004, 70, 062505. 
40. Vydrov, O. A.; Scuseria, G. E., Assessment of a Long-Range Corrected Hybrid 
Functional. J. Chem. Phys. 2006, 125, 234109. 
41. Cohen, A. J.; Mori-Sánchez, P.; Yang, W., Development of Exchange-Correlation 
Functionals with Minimal Many-Electron Self-Interaction Error. J. Chem. Phys. 2007, 126, 
191109. 
42. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K., A Long-Range Correction Scheme for 
Generalized-Gradient-Approximation Exchange Functionals. J. Chem. Phys. 2001, 115, 3540-
3544. 
43. Baer, R.; Neuhauser, D., Density Functional Theory with Correct Long-Range 
Asymptotic Behavior. Phys. Rev. Lett. 2005, 94, 043002. 
44. Tsuneda, T.; Song, J.-W.; Suzuki, S.; Hirao, K., On Koopmans’ Theorem in Density 
Functional Theory. J. Chem. Phys. 2010, 133, 174101. 
45. Refaely-Abramson, S.; Baer, R.; Kronik, L., Fundamental and Excitation Gaps in 
Molecules of Relevance for Organic Photovoltaics from an Optimally Tuned Range-Separated 
Hybrid Functional. Phys. Rev. B 2011, 84, 075144. 
46. Heaton-Burgess, T.; Yang, W., Structural Manifestation of the Delocalization Error of 
Density Functional Approximations: C4n+2 Rings and C20 Bowl, Cage, and Ring Isomers. J. 
Chem. Phys. 2010, 132, 234113. 
47. Sun, H.; Autschbach, J., Influence of the Delocalization Error and Applicability of 
Optimal Functional Tuning in Density Functional Calculations of Nonlinear Optical Properties 
of Organic Donor–Acceptor Chromophores. ChemPhysChem 2013, 14, 2450-2461. 
48. Perdew, J. P.; Zunger, A., Self-Interaction Correction to Density-Functional 
Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048. 
49. Filippetti, A.; Spaldin, N. A., Self-Interaction-Corrected Pseudopotential Scheme for 
Magnetic and Strongly-Correlated Systems. Phys. Rev. B 2003, 67, 125109. 
50. Dabo, I.; Ferretti, A.; Poilvert, N.; Li, Y.; Marzari, N.; Cococcioni, M., Koopmans’ 
Condition for Density-Functional Theory. Phys. Rev. B 2010, 82, 115121. 



39 

 

51. Pederson, M. R.; Ruzsinszky, A.; Perdew, J. P., Communication: Self-Interaction 
Correction with Unitary Invariance in Density Functional Theory. J. Chem. Phys. 2014, 140, 
121103. 
52. Perdew, J. P.; Ruzsinszky, A.; Sun, J.; Pederson, M. R., Chapter One-Paradox of Self-
Interaction Correction: How Can Anything So Right Be So Wrong? Adv. At., Mol., Opt. Phys. 
2015, 64, 1-14. 
53. Pederson, M. R.; Baruah, T.; Kao, D.-y.; Basurto, L., Self-Interaction Corrections 
Applied to Mg-Porphyrin, C60, and Pentacene Molecules. J. Chem. Phys. 2016, 144, 164117. 
54. Heaton, R. A.; Pederson, M. R.; Lin, C. C., A New Density Functional for Fractionally 
Occupied Orbital Systems with Application to Ionization and Transition Energies. J. Chem. 
Phys. 1987, 86, 258-267. 
55. Koopmans, T., Über Die Zuordnung Von Wellenfunktionen Und Eigenwerten Zu Den 
Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104-113. 
56. Zunger, A.; Freeman, A. J., Ground- and Excited-State Properties of LiF in the Local-
Density Formalism. Phys. Rev. B 1977, 16, 2901-2926. 
57. Pederson, M. R.; Heaton, R. A.; Lin, C. C., Density-Functional Theory with Self-
Interaction Correction: Application to the Lithium Molecule. J. Chem. Phys. 1985, 82, 2688-
2699. 
58. Kümmel, S.; Kronik, L., Orbital-Dependent Density Functionals: Theory and 
Applications. Rev. Mod. Phys. 2008, 80, 3-60. 
59. Zhao, Q.; Ioannidis, E. I.; Kulik, H. J., Global and Local Curvature in Density Functional 
Theory. J. Chem. Phys. 2016, 145, 054109. 
60. Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band Theory and Mott Insulators - 
Hubbard-U Instead of Stoner-I. Phys. Rev. B 1991, 44, 943-954. 
61. Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J., Density-Functional Theory and Strong-
Interactions - Orbital Ordering in Mott-Hubbard Insulators. Phys. Rev. B 1995, 52, R5467-
R5470. 
62. Kulik, H. J., Perspective: Treating Electron over-Delocalization with the DFT+U 
Method. J. Chem. Phys. 2015, 142, 240901. 
63. Kulik, H. J.; Cococcioni, M.; Scherlis, D. A.; Marzari, N., Density Functional Theory in 
Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach. Phys. Rev. Lett. 2006, 97, 
103001. 
64. Pickett, W. E.; Erwin, S. C.; Ethridge, E. C., Reformulation of the LDA+U Method for a 
Local-Orbital Basis. Phys. Rev. B 1998, 58, 1201-1209. 
65. Cococcioni, M.; de Gironcoli, S., Linear Response Approach to the Calculation of the 
Effective Interaction Parameters in the LDA+U Method. Phys. Rev. B 2005, 71, 035105. 
66. Körzdörfer, T.; Sears, J. S.; Sutton, C.; Brédas, J.-L., Long-Range Corrected Hybrid 
Functionals for π-Conjugated Systems: Dependence of the Range-Separation Parameter on 
Conjugation Length. J. Chem. Phys. 2011, 135, 204107. 
67. Karolewski, A.; Kronik, L.; Kümmel, S., Using Optimally Tuned Range Separated 
Hybrid Functionals in Ground-State Calculations: Consequences and Caveats. J. Chem. Phys. 
2013, 138, 204115. 
68. Whittleton, S. R.; Sosa Vazquez, X. A.; Isborn, C. M.; Johnson, E. R., Density-
Functional Errors in Ionization Potential with Increasing System Size. J. Chem. Phys. 2015, 142, 
184106. 



40 

 

69. Vlček, V.; Eisenberg, H. R.; Steinle-Neumann, G.; Kronik, L.; Baer, R., Deviations from 
Piecewise Linearity in the Solid-State Limit with Approximate Density Functionals. J. Chem. 
Phys. 2015, 142, 034107. 
70. Otero-de-la-Roza, A.; Johnson, E. R.; DiLabio, G. A., Halogen Bonding from 
Dispersion-Corrected Density-Functional Theory: The Role of Delocalization Error. J. Chem. 
Theory Comput. 2014, 10, 5436-5447. 
71. Ioannidis, E. I.; Kulik, H. J., Towards Quantifying the Role of Exact Exchange in 
Predictions of Transition Metal Complex Properties. J. Chem. Phys. 2015, 143, 034104. 
72. Pritchard, B.; Autschbach, J., Theoretical Investigation of Paramagnetic NMR Shifts in 
Transition Metal Acetylacetonato Complexes: Analysis of Signs, Magnitudes, and the Role of 
the Covalency of Ligand–Metal Bonding. Inorg. Chem. 2012, 51, 8340-8351. 
73. Duignan, T. J.; Autschbach, J., Impact of the Kohn–Sham Delocalization Error on the 4f 
Shell Localization and Population in Lanthanide Complexes. J. Chem. Theory Comput. 2016, 12, 
3109-3121. 
74. Hubbard, J., Electron Correlations in Narrow Energy Bands. Proc. R. Soc. London, Ser. A 
1963, 276, 238-257. 
75. Anderson, P. W., Localized Magnetic States in Metals. Phys. Rev. 1961, 124, 41-53. 
76. Bader, R. F. W., A Quantum Theory of Molecular Structure and Its Applications. Chem. 
Rev. 1991, 91, 893-928. 
77. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy 
Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785-789. 
78. Becke, A. D., Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. 
Chem. Phys. 1993, 98, 5648-5652. 
79. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of 
Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. 
J. Phys. Chem. 1994, 98, 11623-11627. 
80. Bochevarov, A. D.; Friesner, R. A., The Densities Produced by the Density Functional 
Theory: Comparison to Full Configuration Interaction. J. Chem. Phys. 2008, 128, 034102. 
81. He, Y.; Gräfenstein, J.; Kraka, E.; Cremer, D., What Correlation Effects Are Covered by 
Density Functional Theory? Mol. Phys. 2000, 98, 1639-1658. 
82. Janesko, B. G.; Scuseria, G. E., Hartree–Fock Orbitals Significantly Improve the 
Reaction Barrier Heights Predicted by Semilocal Density Functionals. J. Chem. Phys. 2008, 128, 
244112. 
83. Verma, P.; Perera, A.; Bartlett, R. J., Increasing the Applicability of DFT I: Non-
Variational Correlation Corrections from Hartree–Fock DFT for Predicting Transition States. 
Chem. Phys. Lett. 2012, 524, 10-15. 
84. Kim, M.-C.; Sim, E.; Burke, K., Ions in Solution: Density Corrected Density Functional 
Theory (DC-DFT). J. Chem. Phys. 2014, 140, 18A528. 
85. Kim, M.-C.; Park, H.; Son, S.; Sim, E.; Burke, K., Improved DFT Potential Energy 
Surfaces Via Improved Densities. J. Phys. Chem. Lett. 2015, 6, 3802-3807. 
86. Ganzenmüller, G.; Berkaïne, N.; Fouqueau, A.; Casida, M. E.; Reiher, M., Comparison of 
Density Functionals for Differences between the High- (T2g5) and Low- (A1g1) Spin States of 
Iron(II) Compounds. IV. Results for the Ferrous Complexes [Fe(L)(‘NHS4’)]. J. Chem. Phys. 
2005, 122, 234321. 
87. Reiher, M., Theoretical Study of the Fe (Phen) 2 (NCS) 2 Spin-Crossover Complex with 
Reparametrized Density Functionals. Inorg. Chem. 2002, 41, 6928-6935. 



41 

 

88. Reiher, M.; Salomon, O.; Hess, B. A., Reparameterization of Hybrid Functionals Based 
on Energy Differences of States of Different Multiplicity. Theor. Chem. Acc. 2001, 107, 48-55. 
89. Droghetti, A.; Alfè, D.; Sanvito, S., Assessment of Density Functional Theory for Iron 
(II) Molecules across the Spin-Crossover Transition. J. Chem. Phys. 2012, 137, 124303. 
90. Fouqueau, A.; Mer, S.; Casida, M. E.; Lawson Daku, L. M.; Hauser, A.; Mineva, T.; 
Neese, F., Comparison of Density Functionals for Energy and Structural Differences between the 
High- [5t2g: (T2g)4(Eg)2] and Low- [1a1g: (T2g)6(Eg)0] Spin States of the Hexaquoferrous 
Cation [Fe(H2O)6]2+. J. Chem. Phys. 2004, 120, 9473-9486. 
91. Fouqueau, A.; Casida, M. E.; Daku, L. M. L.; Hauser, A.; Neese, F., Comparison of 
Density Functionals for Energy and Structural Differences between the High-[5t2g:(T2g) 4 (Eg) 
2] and Low-[1a1g:(T2g) 6 (Eg) 0] Spin States of Iron (II) Coordination Compounds. II. More 
Functionals and the Hexaminoferrous Cation,[Fe (NH3) 6] 2+. J. Chem. Phys. 2005, 122, 
044110. 
92. Cohen, A. J.; Mori-Sánchez, P.; Yang, W., Fractional Spins and Static Correlation Error 
in Density Functional Theory. J. Chem. Phys. 2008, 129, 121104. 
93. Henderson, T. M.; Janesko, B. G.; Scuseria, G. E., Generalized Gradient Approximation 
Model Exchange Holes for Range-Separated Hybrids. J. Chem. Phys. 2008, 128, 194105. 
94. Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M., A Long-Range-Corrected Density 
Functional That Performs Well for Both Ground-State Properties and Time-Dependent Density 
Functional Theory Excitation Energies, Including Charge-Transfer Excited States. J. Chem. 
Phys. 2009, 130, 054112. 
95. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made 
Simple. Phys. Rev. Lett. 1996, 77, 3865. 
96. Anisimov, V. I.; Gunnarsson, O., Density-Functional Calculation of Effective Coulomb 
Interactions in Metals. Phys. Rev. B 1991, 43, 7570-7574. 
97. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P., Electron-
Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. 
Rev. B 1998, 57, 1505-1509. 
98. Verma, P.; Truhlar, D. G., Does DFT+ U Mimic Hybrid Density Functionals? Theor. 
Chem. Acc. 2016, 135, 1-15. 
99. Petachem. http://www.petachem.com. (accessed Sep 23, 2016). 
100. Ufimtsev, I. S.; Martinez, T. J., Quantum Chemistry on Graphical Processing Units. 3. 
Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. 
J. Chem. Theory Comput. 2009, 5, 2619-2628. 
101. Vosko, S. H.; Wilk, L.; Nusair, M., Accurate Spin-Dependent Electron Liquid 
Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 
1980, 58, 1200-1211. 
102. Hay, P. J.; Wadt, W. R., Ab Initio Effective Core Potentials for Molecular Calculations. 
Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283. 
103. Wadt, W. R.; Hay, P. J., Ab Initio Effective Core Potentials for Molecular Calculations. 
Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284-298. 
104. Saunders, V.; Hillier, I., A “Level–Shifting” Method for Converging Closed Shell 
Hartree–Fock Wave Functions. Int. J. Quantum Chem. 1973, 7, 699-705. 
105. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; 
Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Corso, A. D.; Gironcoli, S. d.; Fabris, S.; Fratesi, G.; 
Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; 



42 

 

Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; 
Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M., 
Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of 
Materials. J. Phys.: Condens. Matter 2009, 21, 395502. 
106. Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue 
Formalism. Phys. Rev. B 1990, 41, 7892. 
107. Quantum-ESPRESSO. http://www.quantum-espresso.org/pseudopotentials/ (accessed 
Sep 23, 2016). 
108. Martyna, G. J.; Tuckerman, M. E., A Reciprocal Space Based Method for Treating Long 
Range Interactions in Ab Initio and Force-Field-Based Calculations in Clusters. J. Chem. Phys. 
1999, 110, 2810-2821. 
109. Kulik, H. J.; Marzari, N., A Self-Consistent Hubbard U Density-Functional Theory 
Approach to the Addition-Elimination Reactions of Hydrocarbons on Bare FeO+. J. Chem. Phys. 
2008, 129, 134314. 
110. Andersson, K.; Malmqvist, P. Å.; Roos, B. O., Second-Order Perturbation Theory with a 
Complete Active Space Self-Consistent Field Reference Function. J. Chem. Phys. 1992, 96, 
1218-1226. 
111. Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, 
L.; Ferré, N.; Frutos, L. M.; Gagliardi, L.; Garavelli, M., Molcas 8: New Capabilities for 
Multiconfigurational Quantum Chemical Calculations across the Periodic Table. J. Comput. 
Chem. 2016, 37, 506-541. 
112. Pierloot, K.; Vancoillie, S., Relative Energy of the High-(T2g5) and Low-(A1g1) Spin 
States of the Ferrous Complexes [Fe (L)(NHS4)]: CASPT2 Versus Density Functional Theory. J. 
Chem. Phys. 2008, 128, 034104. 
113. Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O., New 
Relativistic Ano Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575-6579. 
114. Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O., Main Group 
Atoms and Dimers Studied with a New Relativistic Ano Basis Set. J. Phys. Chem. A 2004, 108, 
2851-2858. 
115. Douglas, M.; Kroll, N. M., Quantum Electrodynamical Corrections to the Fine Structure 
of Helium. Ann. Phys. 1974, 82, 89-155. 
116. Hess, B. A., Relativistic Electronic-Structure Calculations Employing a Two-Component 
No-Pair Formalism with External-Field Projection Operators. Phys. Rev. A 1986, 33, 3742. 
117. Forsberg, N.; Malmqvist, P.-Å., Multiconfiguration Perturbation Theory with Imaginary 
Level Shift. Chem. Phys. Lett. 1997, 274, 196-204. 
118. Ghigo, G.; Roos, B. O.; Malmqvist, P.-A., A Modified Definition of the Zeroth-Order 
Hamiltonian in Multiconfigurational Perturbation Theory (CASPT2). Chem. Phys. Lett. 2004, 
396, 142-149. 
119. Allen, F. H., The Cambridge Structural Database: A Quarter of a Million Crystal 
Structures and Rising. Acta Crystallogr. Sect. B: Struct. Sci. 2002, 58, 380-388. 
120. Ioannidis, E. I.; Gani, T. Z. H.; Kulik, H. J., Molsimplify: A Toolkit for Automating 
Discovery in Inorganic Chemistry. J. Comput. Chem. 2016, 37, 2106-2117. 
121. Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team NIST Atomic Spectra 
Database (Version 5.3), [Online]. . http://physics.nist.gov/asd (accessed May 08, 2016). 
122. Wang, L.-P.; Song, C., Geometry Optimization Made Simple with Translation and 
Rotation Coordinates. J. Chem. Phys. 2016, 144, 214108. 



43 

 

123. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. 
R., Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. 
Cheminf. 2012, 4, 17. 
124. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural Population Analysis. J. Chem. 
Phys. 1985, 83, 735-746. 
125. NBO6.0., E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. 
Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, 
University of Wisconsin, Madison. 2013. 
126. Bader, R. F. W., Atoms in Molecules. Wiley Online Library: 1990. 
127. Tang, W.; Sanville, E.; Henkelman, G., A Grid-Based Bader Analysis Algorithm without 
Lattice Bias. J. Phys.: Condens. Matter 2009, 21, 084204. 
128. Lu, T.; Chen, F., Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 
2012, 33, 580-592. 
129. Mortensen, S. R.; Kepp, K. P., Spin Propensities of Octahedral Complexes from Density 
Functional Theory. J. Phys. Chem. A 2015, 119, 4041-4050. 
130. Roof, L. C.; Kolis, J. W., New Developments in the Coordination Chemistry of Inorganic 
Selenide and Telluride Ligands. Chem. Rev. 1993, 93, 1037-1080. 
131. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; 
Barragán, F.; Alvarez, S., Covalent Radii Revisited. Dalton Trans. 2008, 2832-2838. 
132. Campo, V. L., Jr.; Cococcioni, M., Extended DFT Plus U Plus V Method with On-Site 
and Inter-Site Electronic Interactions. Journal of Physics-Condensed Matter 2010, 22, 055602. 
133. Kulik, H. J.; Marzari, N., Transition-Metal Dioxides: A Case for the Intersite Term in 
Hubbard-Model Functionals. J. Chem. Phys. 2011, 134, 094103. 
134. Kulik, H. J.; Marzari, N., Accurate Potential Energy Surfaces with a DFT+U(R) 
Approach. J. Chem. Phys. 2011, 135, 194105. 

  


