56 research outputs found

    A Caenorhabditis elegans Wild Type Defies the Temperature–Size Rule Owing to a Single Nucleotide Polymorphism in tra-3

    Get PDF
    Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature–size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature–size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature–size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 × CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature–size rule, which has puzzled biologists for decades

    Population pharmacokinetics of the von Willebrand factor-factor VIII interaction in patients with von Willebrand disease

    Get PDF
    Recent studies have reported that patients with von Willebrand disease treated perioperatively with a von Willebrand factor (VWF)/factor VIII (FVIII) concentrate with a ratio of 2.4:1 (Humate P/Haemate P) often present with VWF and/or FVIII levels outside of prespecified target levels necessary to prevent bleeding. Pharmacokinetic (PK)-guided dosing may resolve this problem. As clinical guidelines increasingly recommend aiming for certain target levels of both VWF and FVIII, application of an integrated population PK model describing both VWF activity (VWF:Act) and FVIII levels may improve dosing and quality of care. In total, 695 VWF:Act and 894 FVIII level measurements from 118 patients (174 surgeries) who were treated perioperatively with the VWF/FVIII concentrate were used to develop this population PK model using nonlinear mixed-effects modeling. VWF:Act and FVIII levels were analyzed simultaneously using a turnover model. The protective effect of VWF:Act on FVIII clearance was described with an inhibitory maximum effect function. An average perioperative VWF:Act level of 1.23 IU/mL decreased FVIII clearance from 460 mL/h to 264 mL/h, and increased FVIII half-life from 6.6 to 11.4 hours. Clearly, in the presence of VWF, FVIII clearance decreased with a concomitant increase of FVIII half-life, clarifying the higher FVIII levels observed after repetitive dosing with this concentrate. VWF:Act and FVIII levels during perioperative treatment were described adequately by this newly developed integrated population PK model. Clinical application of this model may facilitate more accurate targeting of VWF:Act and FVIII levels during perioperative treatment with this specific VWF/FVIII concentrate (Humate P/Haemate P).Thrombosis and Hemostasi

    Validation of a perioperative population factor VIII pharmacokinetic model with a large cohort of pediatric hemophilia a patients

    Get PDF
    AIMS: Population pharmacokinetic (PK) models are increasingly applied to perform individualized dosing of factor VIII (FVIII) concentrates in haemophilia A patients. To guarantee accurate performance of a population PK model in dose individualization, validation studies are of importance. However, external validation of population PK models requires independent data sets and is, therefore, seldomly performed. Therefore, this study aimed to validate a previously published population PK model for FVIII concentrates administrated perioperatively. METHODS: A previously published population PK model for FVIII concentrate during surgery was validated using independent data from 87 children with severe haemophilia A with a median (range) age of 2.6 years (0.03–15.2) and body weight of 14 kg (4–57). First, the predictive performance of the previous model was evaluated with MAP Bayesian analysis using NONMEM v7.4. Subsequently, the model parameters were (re)estimated using a combined dataset consisting of the previous modelling data and the data available for the external validation. RESULTS: The previous model underpredicted the measured FVIII levels with a median of 0.17 IU mL(−1). Combining the new, independent and original data, a dataset comprising 206 patients with a mean age of 7.8 years (0.03–77.6) and body weight of 30 kg (4–111) was obtained. Population PK modelling provided estimates for CL, V1, V2, and Q: 171 mL h(−1) 68 kg(−1), 2930 mL 68 kg(−1), 1810 mL 68 kg(−1), and 172 mL h(−1) 68 kg(−1), respectively. This model adequately described all collected FVIII levels, with a slight median overprediction of 0.02 IU mL(−1). CONCLUSIONS: This study emphasizes the importance of external validation of population PK models using real‐life data

    Dosing of factor VIII concentrate by ideal body weight is more accurate in overweight and obese haemophilia A patients

    Get PDF
    Aims Under- and, especially, overdosing of replacement therapy in haemophilia A patients may be prevented by application of other morphometric variables than body weight (BW) to dose factor VIII (FVIII) concentrates. Therefore, we aimed to investigate which morphometric variables best describe interindividual variability (IIV) of FVIII concentrate pharmacokinetic (PK) parameters. Methods PK profiling was performed by measuring 3 FVIII levels after a standardized dose of 50 IU kg(-1) FVIII concentrate. A population PK model was constructed, in which IIV for clearance (CL) and central volume of distribution (V1) was quantified. Relationships between CL, V1 and 5 morphometric variables (BW, ideal BW [IBW], lean BW, adjusted BW, and body mass index [BMI]) were evaluated in normal weight (BMI 30 kg m(-2)). Results In total, 57 haemophilia A patients (FVIII Conclusion IBW is the most suitable morphometric variable to explain interindividual FVIII PK variability and is more appropriate to dose overweight and obese patients

    Perioperative pharmacokinetic-guided factor VIII concentrate dosing in haemophilia (OPTI-CLOT trial):an open-label, multicentre, randomised, controlled trial

    Get PDF
    Background Dosing of replacement therapy with factor VIII concentrate in patients with haemophilia A in the perioperative setting is challenging. Underdosing and overdosing of factor VIII concentrate should be avoided to minimise risk of perioperative bleeding and treatment costs. We hypothesised that dosing of factor VIII concentrate on the basis of a patient's pharmacokinetic profile instead of bodyweight, which is standard treatment, would reduce factor VIII consumption and improve the accuracy of attained factor VIII levels. Methods In this open-label, multicentre, randomised, controlled trial (OPTI-CLOT), patients were recruited from nine centres in Rotterdam, Groningen, Utrecht, Nijmegen, The Hague, Leiden, Amsterdam, Eindhoven, and Maastricht in The Netherlands. Eligible patients were aged 12 years or older with severe or moderate haemophilia A (severe haemophilia was defined as factor VIII concentrations of Findings Between May 1, 2014, and March 1, 2020, 98 patients were assessed for eligibility and 66 were enrolled in the trial and randomly assigned to the pharmacokinetic-guided treatment group (34 [52%]) or the standard treatment group (32 [48%]). Median age was 49.1 years (IQR 35.0 to 62.1) and all participants were male. No difference was seen in consumption of factor VIII concentrate during the perioperative period between groups (mean consumption of 365 IU/kg [SD 202] in pharmacokinetic-guided treatment group vs 379 IU/kg [202] in standard treatment group; adjusted difference -6 IU/kg [95% CI -88 to 100]). Postoperative bleeding occurred in six (18%) of 34 patients in the pharmacokinetic-guided treatment group and three (9%) of 32 in the standard treatment group. One grade 4 postoperative bleeding event occurred, which was in one (3%) patient in the standard treatment group. No treatment-related deaths occurred. Interpretation Although perioperative pharmacokinetic-guided dosing is safe, it leads to similar perioperative factor VIII consumption when compared with standard treatment. However, pharmacokinetic-guided dosing showed an improvement in obtaining factor VIII concentrations within the desired perioperative factor VIII range. These findings provide support to further investigation of pharmacokinetic-guided dosing in perioperative haemophilia care. Copyright (C) 2021 Elsevier Ltd. All rights reserved

    Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans

    Get PDF
    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 °C and 24 °C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii) and N2 (Bristol). No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 °C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity

    Analysis of current perioperative management with Haemate((R)) P/Humate P-(R) in von Willebrand disease:Identifying the need for personalized treatment

    Get PDF
    IntroductionPatients with Von Willebrand disease (VWD) are regularly treated with VWF-containing concentrates in case of acute bleeding, trauma and dental or surgical procedures. AimIn this multicentre retrospective study, current perioperative management with a von Willebrand factor (VWF)/Factor VIII (FVIII) concentrate (Haemate((R)) P) in patients with VWD was evaluated. Patients/MethodsPatients with VWD undergoing minor or major surgery between 2000 and 2015, requiring treatment with a VWF/FVIII concentrate (Haemate((R)) P), were included. Achieved VWF activity (VWF:Act) and FVIII during FVIII-based treatment regimens were compared to predefined target levels in national guidelines. ResultsIn total, 103 patients with VWD (148 surgeries) were included: 54 type 1 (73 surgeries), 43 type 2 (67 surgeries) and 6 type 3 (8 surgeries). Overall, treatment resulted in high VWF:Act and FVIII levels, defined as 0.20IU/mL above predefined levels. In patients with type 1 VWD, respectively, 65% and 91% of trough VWF:Act and FVIII levels were higher than target levels. In patients with type 2 and type 3 VWD, respectively, 53% and 57% of trough VWF:Act and 72% and 73% of trough FVIII levels were higher than target level. Furthermore, FVIII accumulation over time was observed, while VWF:Act showed a declining trend, leading to significantly higher levels of FVIII than VWF:Act. ConclusionHigh VWF:Act and accumulation of FVIII were observed after perioperative FVIII-based replacement therapy in patients with VWD, both underlining the necessity of personalization of dosing regimens to optimize perioperative treatment
    corecore