1,493 research outputs found

    Strainrange partitioning: A tool for characterizing high temperature low cycle fatigue

    Get PDF
    The basic concepts of strain range partitioning are reviewed and the areas requiring for expanded verification are detailed. A suggested cooperative evaluation program involves the verification of the four basic life relationships (for PP, CC, PC, and CP type inelastic strain ranges) for a variety of materials that are of direct interest to the participating organizations

    Use of strainrange partitioning to predict high temperature low-cycle fatigue life

    Get PDF
    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life

    Creep-fatigue analysis by Strainrange Partitioning

    Get PDF
    Strainrange Partitioning provides unifying framework for characterizing high-temperature, low-cycle, creep-fatigue properties of metals and alloys. Method offers distinct advantage to designers of immediately providing reliable upper and lower bounds on cyclic life for any type of inelastic strain cycle that may be encountered in service

    Ductility normalized-strainrange partitioning life relations for creep-fatigue life predictions

    Get PDF
    Procedures based on Strainrange Partitioning (SRP) are presented for estimating the effects of environment and other influences on the high temperature, low cycle, creep fatigue resistance of alloys. It is proposed that the plastic and creep, ductilities determined from conventional tensile and creep rupture tests conducted in the environment of interest be used in a set of ductility normalized equations for making a first order approximation of the four SRP inelastic strainrange life relations. Different levels of sophistication in the application of the procedures are presented by means of illustrative examples with several high temperature alloys. Predictions of cyclic lives generally agree with observed lives within factors of three

    Mechanisms of High-Temperature Fatigue Failure in Alloy 800H

    Get PDF
    The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions

    Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    Get PDF
    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes

    The Raman Spectra of the Methyl Alcohols, CH3OH, CH3OD, and CH2DOD

    Full text link
    Measurements of the Raman spectra of CH3OH, CH3OD, and CH2DOD, produced by the mercury lines at 2536 and 4358A units, are analyzed to yield a provisional assignment of the fundamental frequencies. The significance of the character of the OH and OD bands to the problem of internal rotation is discussed. A new approximation to a potential constant for the C☒O bond is presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70177/2/JCPSA6-5-12-927-1.pd

    The role of APTES as a primer for polystyrene coated AA2024-T3

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2024(3-Aminopropyl)triethoxysilane (APTES) silane possesses one terminal amine group and three ethoxy groups extending from each silicon atom, acting as a crucial interface between organic and inorganic materials. In this study, after APTES was deposited on the aluminum alloy AA2024-T3 as a primer for an optional top coating with polystyrene (PS), its role with regard to stability as a protection layer and interaction with the topcoat were studied via combinatorial experimentation. The aluminum alloy samples primed with APTES under various durations of concentrated vapor deposition (20, 40, or 60 min) with an optional post heat treatment and/or PS topcoat were comparatively characterized via electrochemical impedance spectroscopy (EIS) and surface energy. The samples top-coated with PS on an APTES layer primed for 40 min with a post heat treatment revealed excellent performance regarding corrosion impedance. A primed APTES surface with higher surface energy accounted for this higher corrosion impedance. Based on the SEM images and the surface energy calculated from the measured contact angles on the APTES-primed surfaces, four mechanisms are suggested to explain that the good protection performance of the APTES/PS coating system can be attributed to the enhanced wettability of PS on the cured APTES primer with higher surface energy. The results also suggest that, in the early stages of exposure to the corrosion solution, a thinner APTES primer (deposited for 20 min) enhances protection against corrosion, which can be attributed to the hydrolytic stability and hydrolyzation/condensation of the soaked APTES and the dissolution of the naturally formed aluminum oxide pre-existing in the bare samples. An APTES primer subjected to additional heat treatment will increase the impedance of the coating system significantly. APTES, and silanes, in general, used as adherent agents or surface modifiers, have a wide range of potential applications in micro devices, as projected in the Discussion section.NASA EPSCor Program Cooperative Agreement Notice (CAN) (80NSSC20M0137
    • …
    corecore