228 research outputs found
An Error Model for the Cirac-Zoller CNOT gate
In the framework of ion-trap quantum computing, we develop a characterization
of experimentally realistic imperfections which may affect the Cirac-Zoller
implementation of the CNOT gate. The CNOT operation is performed by applying a
protocol of five laser pulses of appropriate frequency and polarization. The
laser-pulse protocol exploits auxiliary levels, and its imperfect
implementation leads to unitary as well as non-unitary errors affecting the
CNOT operation. We provide a characterization of such imperfections, which are
physically realistic and have never been considered before to the best of our
knowledge. Our characterization shows that imperfect laser pulses unavoidably
cause a leak of information from the states which alone should be transformed
by the ideal gate, into the ancillary states exploited by the experimental
implementation.Comment: 10 pages, 1 figure. Accepted as a contributed oral communication in
the QuantumComm 2009 International Conference on Quantum Communication and
Quantum Networking, Vico Equense, Italy, October 26-30, 200
Nonlinear coupling of continuous variables at the single quantum level
We experimentally investigate nonlinear couplings between vibrational modes
of strings of cold ions stored in linear ion traps. The nonlinearity is caused
by the ions' Coulomb interaction and gives rise to a Kerr-type interaction
Hamiltonian H = n_r*n_s, where n_r,n_s are phonon number operators of two
interacting vibrational modes. We precisely measure the resulting oscillation
frequency shift and observe a collapse and revival of the contrast in a Ramsey
experiment. Implications for ion trap experiments aiming at high-fidelity
quantum gate operations are discussed
Nonlinear Spectroscopy of Controllable Many-Body Quantum Systems
We establish a novel approach to probing spatially resolved multi-time
correlation functions of interacting many-body systems, with scalable
experimental overhead. Specifically, designing nonlinear measurement protocols
for multidimensional spectra in a chain of trapped ions with single-site
addressability enables us, e.g., to distinguish coherent from incoherent
transport processes, to quantify potential anharmonicities, and to identify
decoherence-free subspaces.Comment: 12 pages, 3 figure
Depth-dependent critical behavior in V2H
Using X-ray diffuse scattering, we investigate the critical behavior of an
order-disorder phase transition in a defective "skin-layer" of V2H. In the
skin-layer, there exist walls of dislocation lines oriented normal to the
surface. The density of dislocation lines within a wall decreases continuously
with depth. We find that, because of this inhomogeneous distribution of
defects, the transition effectively occurs at a depth-dependent local critical
temperature. A depth-dependent scaling law is proposed to describe the
corresponding critical ordering behavior.Comment: 5 pages, 4 figure
- …