342 research outputs found

    Modelling Production Risk in Small Scale Subsistence Agriculture

    Get PDF
    In this paper we are investigating how production risk may influence the way a risk averse producer like a subsistence farmer chooses optimal input levels. Risk averse producers will take into account both the mean and the variance of output, and therefore we expect them to choose input levels which differ form the optimal input level of risk neutral producers. Production risk is of particular importance in developing countries, since variance in production here may have grave consequences for the farmer and his family. To model the production decision problem under such circumstances we have made use of the fact that production risk can be treated as heteroskedasticity. Our analysis is based on a dataset obtained from a survey on smallholders in the Kilimanjaro region in Tanzania. Since evidence of output risk in inputs is found, we reestimate the mean and variance function using a maximum likelihood estimator, and correct the standard errors to provide valid inference.Farm Management,

    Evaluating a framework of theoretical hypotheses for animation learning

    Get PDF
    This paper presents a set of theoretical hypotheses suggesting various relationships between didactical setting and learning effects with animations. Particularly, we investigated whether individual flow-control adequately provides didactical means to reduce the cognitive load imposed by animations. We did not find an effect of individual flow control, probably due to the fact that this learning condition was embedded in a setting where not enough verbal information was offered together with the graphical animation. Overall the multimedia effects found in this study are in line with known principles of didactical multimedia design. Further, this study sheds light on theoretical aspects involved in the complex interaction between learning content, presentation, learning and resulting knowledg

    Level density and gamma strength function in 162-Dy from inelastic 3-He scattering

    Full text link
    Complementary measurements have been performed for the level density and gamma strength function in 162-Dy using inelastic 3-He scattering. Comparing these results to previous measurements using the 163-Dy(3-He,alpha) reaction, reveals that the measured quantities above 1.5 MeV do not depend significantly on the nuclear reaction chosen.Comment: 15 pages, including 7 figure

    Critical temperature for quenching of pair correlations

    Full text link
    The level density at low spin in the 161,162-Dy and 171,172-Yb nuclei has been extracted from primary gamma rays. The nuclear heat capacity is deduced within the framework of the canonical ensemble. The heat capacity exhibits an S-formed shape as a function of temperature, which is interpreted as a fingerprint of the phase transition from a strongly correlated to an uncorrelated phase. The critical temperature for the quenching of pair correlations is found at Tc=0.50(4) MeV.Comment: 8 pages including 4 figures, different method to extract Tc, different figures, text partly rewritte

    Level density and thermal properties in rare earth nuclei

    Full text link
    A convergent method to extract the nuclear level density and the gamma-ray strength function from primary gamma-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parameterizations for the E1, M1 and pygmy resonance strength. However, a significant decrease of the pygmy resonance strength at finite temperatures has been observed.Comment: 15 pages including 8 figures. Proceedings article for the conference Nuclear Structure and Related Topics, Dubna, Russia, June 6-10, 200

    Pairing Reentrance Phenomenon in Heated Rotating Nuclei in the Shell Model Monte Carlo Approach

    Full text link
    Rotational motion of heated 72-Ge is studied within the microscopic Shell Model Monte Carlo approach. We investigate the the angular momentum alignment and nuclear pairing correlations associated with J-pi Cooper pairs as a function of the rotational frequency and temperature. The reentrance of pairing correlations with temperature is predicted at high rotational frequencies. It manifests itself through the anomalous behavior of specific heat and level density.Comment: 4 pages; 4 figure

    Observation of Thermodynamical Properties in the 162^{162}Dy, 166^{166}Er and 172^{172}Yb Nuclei

    Full text link
    The density of accessible levels in the (3^3He,αγ\alpha \gamma) reaction has been extracted for the 162^{162}Dy, 166^{166}Er and 172^{172}Yb nuclei. The nuclear temperature is measured as a function of excitation energy in the region of 0 -- 6 MeV. The temperature curves reveal structures indicating new degrees of freedom. The heat capacity of the nuclear system is discussed within the framework of a canonical ensemble.Comment: 12 pages, 4 figures include

    Microcanonical entropies and radiative strength functions of 50,51^{50,51}V

    Get PDF
    The level densities and radiative strength functions (RSFs) of 50,51^{50,51}V have been extracted using the (3^3He,αγ\alpha \gamma) and (3^3He,3^3Heγ^{\prime} \gamma) reactions, respectively. From the level densities, microcanonical entropies are deduced. The high γ\gamma-energy part of the RSF is described by the giant electric dipole resonance. A significant enhancement over the predicted strength in the region of Eγ3E_{\gamma} \lesssim 3 MeV is seen, which at present has no theoretical explanation.Comment: 16 pages including 9 figure

    Quasicontinuum γ\gamma-decay of 91,92^{91,92}Zr: benchmarking indirect (n,γn,\gamma) cross section measurements for the ss-process

    Full text link
    Nuclear level densities (NLDs) and γ\gamma-ray strength functions (γ\gammaSFs) have been extracted from particle-γ\gamma coincidences of the 92^{92}Zr(p,pγp,p' \gamma)92^{92}Zr and 92^{92}Zr(p,dγp,d \gamma)91^{91}Zr reactions using the Oslo method. The new 91,92^{91,92}Zr γ\gammaSF data, combined with photonuclear cross sections, cover the whole energy range from Eγ1.5E_{\gamma} \approx 1.5~MeV up to the giant dipole resonance at Eγ17E_{\gamma} \approx 17~MeV. The wide-range γ\gammaSF data display structures at Eγ9.5E_{\gamma} \approx 9.5~MeV, compatible with a superposition of the spin-flip M1M1 resonance and a pygmy E1E1 resonance. Furthermore, the γ\gammaSF shows a minimum at Eγ23E_{\gamma} \approx 2-3~MeV and an increase at lower γ\gamma-ray energies. The experimentally constrained NLDs and γ\gammaSFs are shown to reproduce known (n,γn, \gamma) and Maxwellian-averaged cross sections for 91,92^{91,92}Zr using the {\sf TALYS} reaction code, thus serving as a benchmark for this indirect method of estimating (n,γn, \gamma) cross sections for Zr isotopes.Comment: 10 pages and 9 figure
    corecore