190 research outputs found

    Risk factors for wound infection in surgery for spinal metastasis

    Get PDF
    Wound infection rates are generally higher in patients undergoing surgery for spinal metastasis. Risk factors of wound infection in these patients are poorly understood. Purpose To identify demographic and clinical variables that may be associated with patients experiencing a higher wound infection rate. Study design Retrospective study with prospectively collected data of spinal metastasis patients operated consecutively at a University Teaching Hospital, adult spine division which is a tertiary referral centre for complex spinal surgery. Patient sample Ninety-eight patients were all surgically treated, consecutively from January 2009 to September 2011. Three patients had to be excluded due to inadequate data. Outcome measures Physiological measures, with presence or absence of microbiologically proven infection. Methods Various demographic and clinical data were recorded, including age, serum albumin level, blood total lymphocyte count, corticosteroid intake, Malnutrition Universal Screening Tool (MUST) score, neurological disability, skin closure material used, levels of surgery and administration of peri-operative corticosteroids. No funding was received from any sources for this study and as far as we are aware, there are no potential conflict of interest-associated biases in this study. Results Higher probabilities of infection were associated with low albumin level, seven or more levels of surgery, use of delayed/non-absorbable skin closure material and presence of neurological disability. Of these factors, levels of surgery were found to be statistically significant at the 5 % significance level. Conclusion Risk of infection is high (17.9 %) in patients undergoing surgery for spinal metastasis. Seven or more vertebral levels of surgery increase the risk of infection significantly (p < 0.05). Low albumin level and presence of neurological disability appear to show a trend towards increased risk of infection. Use of absorbable skin closure material, age, low lymphocyte count, peri-operative administration of corticosteroids and MUST score do not appear to influence the risk of infection

    Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from <i>Bacillus clausii</i>

    Get PDF
    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ~0.5-2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (K(M)) but to pH dependence of catalytic turnover: The k(cat) of B. clausii cotA was 1 s⁻¹ at pH 6 and 5 s⁻¹ at pH 8 in contrast to 6 s⁻¹ at pH 6 and 2 s⁻¹ at pH 8 for of B. subtilis cotA. Overall, k(cat)/K(M) was 10-fold higher for B. subtilis cotA at pH(opt). While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500-700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ~20 minutes half-life at 80°C, less than the ~50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH~8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization

    Fluphenazine-induced acute and tardive dyskinesias in monkeys

    Full text link
    Five Cebus apella monkeys were treated with biweekly injections of fluphenazine enanthate (0.1–3.2 mg/kg IM). Three of these completed 1 full year of treatment, one injured its leg after 6 months of treatment and was killed, and another died of unknown causes after 9 months of treatment. All monkeys displayed abnormal movements corresponding to the early appearing extrapyramidal symptoms of neuroleptic-treated patients. These consisted initially of slowing or absence of volitional movement, trembling of the hands, trembling of the entire body, and general drowsy behavior. As treatment progessed, a variety of abnormal postures and movements appeared after each injection that were not exacerbated by drug withdrawal and, as tested at the end of the year, could be abolished or prevented with benztropine mesylate (0.2–0.5 mg/kg IM). The three monkeys that completed 1 year of treatment with fluphenazine were then withdrawn from the drug. After withdrawal, all three developed movements similar in appearance to those of patients with tardive dyskinesia (TD). Reinstitution of fluphenazine treatment, as tested in one monkey, abolished all movements resembling TD.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46432/1/213_2004_Article_BF00555204.pd

    Bacterial laccases: some recent advances and applications

    Get PDF
    Laccases belong to the large family of multi-copper oxidases (MCOs) that couple the one-electron oxidation of substrates with the four-electron reduction of molecular oxygen to water. Because of their high relative non-specific oxidation capacity particularly on phenols and aromatic amines as well as the lack of requirement for expensive organic cofactors, they have found application in a large number of biotechnological fields. The vast majority of studies and applications were performed using fungal laccases, but bacterial laccases show interesting properties such as optimal temperature above 50 °C, optimal pH at the neutral to alkaline range, thermal and chemical stability and increased salt tolerance. Additionally, bacterial systems benefit from a wide range of molecular biology tools that facilitates their engineering and achievement of high yields of protein production and set-up of cost-effective bioprocesses. In this review we will provide up-to-date information on the distribution and putative physiological role of bacterial laccases and highlight their distinctive structural and biochemical properties, discuss the key role of copper in the biochemical properties, discuss thermostability determinants and, finally, review biotechnological applications with a focus on catalytic mechanisms on phenolics and aromatic amines.info:eu-repo/semantics/publishedVersio

    Early fixation versus conservative therapy of multiple, simple rib fractures (FixCon): protocol for a multicenter randomized controlled trial

    Get PDF
    Background: Multiple rib fractures are common injuries in both the young and elderly. Rib fractures account for 10% of all trauma admissions and are seen in up to 39% of patients after thoracic trauma. With morbidity and mortality rates increasing with the number of rib fractures as well as poor quality of life at long-term follow-up, multiple rib fractures pose a serious health hazard. Operative fixation of flail chest is beneficial over nonoperative treatment regarding, among others, pneumonia and both intensive care unit (ICU) and hospital length of stay. With no high-quality evidence on the effects of multiple simple rib fracture treatment, the optimal treatment modality remains unknown. This study sets out to investigate outcome of operative fixation versus nonoperative treatment of multiple simple rib fractures. Methods: The proposed study is a multicenter randomized controlled trial. Patients will be eligible if they have three or more multiple simple rib fractures of which at least one is disl

    The Dopamine Augmenter L-DOPA Does Not Affect Positive Mood in Healthy Human Volunteers

    Get PDF
    Dopamine neurotransmission influences approach toward rewards and reward-related cues. The best cited interpretation of this effect proposes that dopamine mediates the pleasure that commonly accompanies reward. This hypothesis has received support in some animal models and a few studies in humans. However, direct assessments of the effect of transiently increasing dopamine neurotransmission have been largely limited to the use of psychostimulant drugs, which elevate brain levels of multiple neurotransmitters in addition to dopamine. In the present study we tested the effect of more selectively elevating dopamine neurotransmission, as produced by administration of the immediate dopamine precursor, L-DOPA (0, 100/25, 200/50 mg, Sinemet), in healthy human volunteers. Neither dose altered positive mood. The results suggest that dopamine neurotransmission does not directly influence positive mood in humans

    The Emergence of Emotions

    Get PDF
    Emotion is conscious experience. It is the affective aspect of consciousness. Emotion arises from sensory stimulation and is typically accompanied by physiological and behavioral changes in the body. Hence an emotion is a complex reaction pattern consisting of three components: a physiological component, a behavioral component, and an experiential (conscious) component. The reactions making up an emotion determine what the emotion will be recognized as. Three processes are involved in generating an emotion: (1) identification of the emotional significance of a sensory stimulus, (2) production of an affective state (emotion), and (3) regulation of the affective state. Two opposing systems in the brain (the reward and punishment systems) establish an affective value or valence (stimulus-reinforcement association) for sensory stimulation. This is process (1), the first step in the generation of an emotion. Development of stimulus-reinforcement associations (affective valence) serves as the basis for emotion expression (process 2), conditioned emotion learning acquisition and expression, memory consolidation, reinforcement-expectations, decision-making, coping responses, and social behavior. The amygdala is critical for the representation of stimulus-reinforcement associations (both reward and punishment-based) for these functions. Three distinct and separate architectural and functional areas of the prefrontal cortex (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex) are involved in the regulation of emotion (process 3). The regulation of emotion by the prefrontal cortex consists of a positive feedback interaction between the prefrontal cortex and the inferior parietal cortex resulting in the nonlinear emergence of emotion. This positive feedback and nonlinear emergence represents a type of working memory (focal attention) by which perception is reorganized and rerepresented, becoming explicit, functional, and conscious. The explicit emotion states arising may be involved in the production of voluntary new or novel intentional (adaptive) behavior, especially social behavior

    Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits

    Get PDF
    Background Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. Objective The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. Results The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Conclusions Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression
    corecore