248 research outputs found
Effective interaction between molecules in the BEC regime of a superfluid Fermi gas
We investigate the effective interaction between Cooper-pair molecules in the
st rong-coupling BEC regime of a superfluid Fermi gas with a Feshbach
resonance. Our work uses a path integral formulation and a renormalization
group (RG) analy sis of fluctuations in a single-channel model. We show that a
physical cutoff en ergy originating from the finite molecular
binding energy is the key to understanding the interaction between molecules in
the BEC regime. Our work t hus clarifies recent results by showing that is a {\it ba re} molecular scattering length while is the low energy molecular scattering length
renormalized to include high-energy scat tering up to (here is the scattering length between Fermi atoms). We also include many-body
effects at finite temperatures. We find that is strongly dependent
on temperature, vanishing at , consistent with the earlier Bose gas
results of Bijlsma and Stoof.Comment: 10 pages, 3 figure
Transition Temperature of a Uniform Imperfect Bose Gas
We calculate the transition temperature of a uniform dilute Bose gas with
repulsive interactions, using a known virial expansion of the equation of
state. We find that the transition temperature is higher than that of an ideal
gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a
is the S-wave scattering length, and K_0 is a constant given in the paper. This
disagrees with all existing results, analytical or numerical. It agrees exactly
in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe
The transition temperature of the dilute interacting Bose gas
We show that the critical temperature of a uniform dilute Bose gas must
increase linearly with the s-wave scattering length describing the repulsion
between the particles. Because of infrared divergences, the magnitude of the
shift cannot be obtained from perturbation theory, even in the weak coupling
regime; rather, it is proportional to the size of the critical region in
momentum space. By means of a self-consistent calculation of the quasiparticle
spectrum at low momenta at the transition, we find an estimate of the effect in
reasonable agreement with numerical simulations.Comment: 4 pages, Revtex, to be published in Physical Review Letter
Transition temperature of a dilute homogeneous imperfect Bose gas
The leading-order effect of interactions on a homogeneous Bose gas is
theoretically predicted to shift the critical temperature by an amount
\Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where
a_{scatt} is the scattering length and n is the density. There have been
several different theoretical estimates for the numerical coefficient #. We
claim to settle the issue by measuring the numerical coefficient in a lattice
simulation of O(2) phi^4 field theory in three dimensions---an effective theory
which, as observed previously in the literature, can be systematically matched
to the dilute Bose gas problem to reproduce non-universal quantities such as
the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to
improvement of analysis in the longer companion pape
The effect of disorder on the critical temperature of a dilute hard sphere gas
We have performed Path Integral Monte Carlo (PIMC) calculations to determine
the effect of quenched disorder on the superfluid density of a dilute 3D hard
sphere gas. The disorder was introduced by locating set of hard cylinders
randomly inside the simulation cell. Our results indicate that the disorder
leaves the superfluid critical temperature basically unchanged. Comparison to
experiments of helium in Vycor is made.Comment: 4 pages, 4 figure
Thermodynamic properties of confined interacting Bose gases - a renormalization group approach
A renormalization group method is developed with which thermodynamic
properties of a weakly interacting, confined Bose gas can be investigated.
Thereby effects originating from a confining potential are taken into account
by periodic boundary conditions and by treating the resulting discrete energy
levels of the confined degrees of freedom properly. The resulting density of
states modifies the flow equations of the renormalization group in momentum
space. It is shown that as soon as the characteristic length of confinement
becomes comparable to the thermal wave length of a weakly interacting and
trapped Bose gas its thermodynamic properties are changed significantly. This
is exemplified by investigating characteristic bunching properties of the
interacting Bose gas which manifest themselves in the second order coherence
factor
Path integral Monte Carlo simulation of helium at negative pressures
Path integral Monte Carlo (PIMC) simulations of liquid helium at negative
pressure have been carried out for a temperature range from the critical
temperature to below the superfluid transition. We have calculated the
temperature dependence of the spinodal line as well as the pressure dependence
of the isothermal sound velocity in the region of the spinodal. We discuss the
slope of the superfluid transition line and the shape of the dispersion curve
at negative pressures.Comment: 6 pages, 7 figures, submitted to Physical Review B Revised: new
reference, replaced figure
Bose-Einstein Condensation Temperature of Homogenous Weakly Interacting Bose Gas in Variational Perturbation Theory Through Six Loops
We compute the shift of the transition temperature for a homogenous weakly
interacting Bose gas in leading order in the scattering length a for given
particle density n. Using variational perturbation theory through six loops in
a classical three-dimensional scalar field theory, we obtain Delta T_c/T_c =
1.25+/-0.13 a n^(1/3), in agreement with recent Monte-Carlo results.Comment: 4 pages; omega' corrected: final result changes slightly to
1.25+/-0.13; references added; several minor change
Critical temperature of the superfluid transition in bose liquids
A phenomenological criterion for the superfluid transition is proposed, which
is similar to the Lindemann criterion for the crystal melting. Then we derive a
new formula for the critical temperature, relating to the mean
kinetic energy per particle above the transition. The suppression of the
critical temperature in a sufficiently dense liquid is described as a result of
the quantum decoherence phenomenon. The theory can account for the observed
dependence of on density in liquid helium and results in an
estimate K for molecular hydrogen.Comment: 4 pages, 1 fi
Shot noise suppression at room temperature in atomic-scale Au junctions
Shot noise encodes additional information not directly inferable from simple
electronic transport measurements. Previous measurements in atomic-scale metal
junctions at cryogenic temperatures have shown suppression of the shot noise at
particular conductance values. This suppression demonstrates that transport in
these structures proceeds via discrete quantum channels. Using a high frequency
technique, we simultaneously acquire noise data and conductance histograms in
Au junctions at room temperature and ambient conditions. We observe noise
suppression at up to three conductance quanta, with possible indications of
current-induced local heating and noise in the contact region at high
biases. These measurements demonstrate the quantum character of transport at
room temperature at the atomic scale. This technique provides an additional
tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures
- …