1,217 research outputs found

    Aspects of the Mass Distribution of Interstellar Dust Grains in the Solar System from In-Situ Measurements

    Get PDF
    The in-situ detection of interstellar dust grains in the Solar System by the dust instruments on-board the Ulysses and Galileo spacecraft as well as the recent measurements of hyperbolic radar meteors give information on the properties of the interstellar solid particle population in the solar vicinity. Especially the distribution of grain masses is indicative of growth and destruction mechanisms that govern the grain evolution in the interstellar medium. The mass of an impacting dust grain is derived from its impact velocity and the amount of plasma generated by the impact. Because the initial velocity and the dynamics of interstellar particles in the Solar System are well known, we use an approximated theoretical instead of the measured impact velocity to derive the mass of interstellar grains from the Ulysses and Galileo in-situ data. The revised mass distributions are steeper and thus contain less large grains than the ones that use measured impact velocities, but large grains still contribute significantly to the overall mass of the detected grains. The flux of interstellar grains with masses >1014kg> 10^{-14} {\rm kg} is determined to be 1106m2s11\cdot 10^{-6} {\rm m}^{-2} {\rm s}^{-1}. The comparison of radar data with the extrapolation of the Ulysses and Galileo mass distribution indicates that the very large (m>1010kgm > 10^{-10} {\rm kg}) hyperbolic meteoroids detected by the radar are not kinematically related to the interstellar dust population detected by the spacecraft.Comment: 14 pages, 11 figures, to appear in JG

    Alpha Clustering and the stellar nucleosynthesis of carbon

    Get PDF
    The astrophysical S--factor and reaction rates for the triple--alpha process are calculated in the direct--capture model. It is shown that the stellar carbon production is extremely sensitive to small variations in the N--N interaction.Comment: 2 pages LaTe

    Galileo dust data from the jovian system: 2000 to 2003

    Full text link
    The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space Scienc

    In Situ Measurements of Interstellar Dust

    Get PDF
    We present the mass distribution of interstellar grains measured in situ by the Galileo and Ulysses spaceprobes as cumulative flux. The derived in situ mass distribution per logarithmic size interval is compared to the distribution determined by fitting extinction measurements. Large grains measured in situ contribute significantly to the overall mass of dust in the local interstellar cloud. The problem of a dust-to-gas mass ratio that contradicts cosmic abundances is discussed.Comment: 4 pages and two figure

    One year of Galileo dust data from the Jovian system: 1996

    Get PDF
    The dust detector system onboard Galileo records dust impacts in circumjovian space since the spacecraft has been injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as high resolution realtime science data or recorded data during a time period of 100 days, or via memory read-outs during the remaining times. Because the data transmission rate of the spacecraft is very low, the complete data set (i. e. all parameters measured by the instrument during impact of a dust particle) for only 2% (5353) of all particles detected could be transmitted to Earth; the other particles were only counted. Together with the data for 2883 particles detected during Galileo's interplanetary cruise and published earlier, complete data of 8236 particles detected by the Galileo dust instrument from 1989 to 1996 are now available. The majority of particles detected are tiny grains (about 10 nm in radius) originating from Jupiter's innermost Galilean moon Io. These grains have been detected throughout the Jovian system and the highest impact rates exceeded 100min1\rm 100 min^{-1}. A small number of grains has been detected in the close vicinity of the Galilean moons Europa, Ganymede and Callisto which belong to impact-generated dust clouds formed by (mostly submicrometer sized) ejecta from the surfaces of the moons (Kr\"uger et al., Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains have been detected thoughout the Jovian system and especially in the region between the Galilean moons.Comment: accepted for Planetary and Space Science, 33 pages, 6 tables, 10 figure

    Jovian Dust Streams: A monitor of Io's volcanic plume activity

    Full text link
    Streams of high speed dust particles originate from Jupiter's innermost Galilean moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200kms1\rm 200 km s^{-1}. Galileo, which was the first orbiter spacecraft of Jupiter, has continuously monitored the dust streams during 34 revolutions about the planet between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10310^{-3} and 10kgs1\mathrm{10} \rm kg s^{-1}, and is typically in the range of 0.1 to 1kgs1\rm 1 kg s^{-1}. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes.Comment: Geophysical Research Letters, accepted, 1 color figure, 1 b/w figur

    A Dust Cloud of Ganymede Maintained by Hypervelocity Impacts of Interplanetary Micrometeoroids

    Get PDF
    A dust cloud of Ganymede has been detected by in-situ measurements with the dust detector onboard the Galileo spacecraft. The dust grains have been sensed at altitudes below five Ganymede radii (Ganymede radius = 2,635km\rm 2,635 km). Our analysis identifies the particles in the dust cloud surrounding Ganymede by their impact direction, impact velocity, and mass distribution and implies that they have been kicked up by hypervelocity impacts of micrometeoroids onto the satellite's surface. We calculate the radial density profile of the particles ejected from the satellite by interplanetary dust grains. We assume the yields, mass and velocity distributions of the ejecta obtained from laboratory impact experiments onto icy targets and consider the dynamics of the ejected grains in ballistic and escaping trajectories near Ganymede. The spatial dust density profile calculated with interplanetary particles as impactors is consistent with the profile derived from the Galileo measurements. The contribution of interstellar grains as projectiles is negligible. Dust measurements in the vicinities of satellites by spacecraft detectors are suggested as a beneficial tool to obtain more knowledge about the satellite surfaces, as well as dusty planetary rings maintained by satellites through the impact ejecta mechanism.Comment: 31 pages, 10 figures, accepted for Planetary and Space Scienc

    Binaural Interaction in the Nucleus Laminaris of the Barn Owl : A Quantitative Model

    No full text
    A quantitative, neuronal model is proposed for the computation of interaural time difference (ITD) in the auditory system of the barn owl. The model uses a general, probabilistic approach, and is composed of two stages, the characteristics of which are based on anatomical and physiological evidence. Excitatory inputs from both ears, phase-locked to the waveform of tonal stimuli, together with phase-independent inhibitory inputs are summated linearly. The result is transformed into a probability of spike generation by a sigmoid nonlinearity, constituting a stochastic, ’soft’ threshold with saturation. The model incorporates inhibition as a control parameter on the nonlinearity, and includes the usual crosscorrelation-type models as a special case. It has a minimum number of parameters, the values of which can be estimated from physiological data in a straightforward manner. This simple, general model accounts for the binaural response properties of physiologically recorded neurons. In particular, it explains the experimentally observed ITD-tuning and the increase of phase-locking from input to output neurons. The model predicts that a decrease in inhibition causes a non-monotonic change in sensitivity to ITD
    corecore