74 research outputs found

    Quantitative strain analysis of the large deformation at the scale of microstructure: comparison between Digital Image Correlation and Microgrid techniques

    Get PDF
    A comparative study has been carried out to assess the accuracy of the Digital Image Correlation (DIC) technique for the quantification of large strains in the microstructure of an Interstitial Free (IF) steel used in automotive applications. A microgrid technique has been used in this study in order to validate independently the strain measurements obtained with DIC. Microgrids with a pitch of 5 microns were printed on the etched microstructure of the IF steel to measure the local in-plane strain distribution during a tensile test carried out in a Scanning Electron Microscope (SEM). The progressive deformation of the microstructure with microgrids has been recorded throughout the test as a sequence of micrographs and subsequently processed using DIC to quantify the distribution of local strain values. Strain maps obtained with the two techniques have been compared in order to assess the accuracy of the DIC measurements obtained using the natural patterns of the revealed microstructure in the SEM micrographs. The results obtained with the two techniques are qualitatively similar and thus, demonstrate the reliability of DIC applied to microstructures, even after large deformations in excess of 0.7. However, an average error of about 16 % was found in the strain values calculated using DIC

    Strain Evolution Measurement at the Microscale of a Dual Phase Steel Using Digital Image Correlation

    Get PDF
    Digital Image Correlation (DIC) together with in-situ tensile testing has been used to measure in DP1000 steel the evolution of plastic strains at the microstructure scale. Interrupted tensile tests were performed on specially designed samples and scanning-electron micrographs were taken at regular applied strain intervals. Patterns defined by the microstructural features of the material have been used for the correlation carried out using LAVision software. The full field strain maps produced by DIC show a progressive localisation of deformation into bands at about 45o with respect to the loading direction. Plastic strains as high as 130% have been measured within the ferrite phase

    Residual stress development in selective laser-melted Ti6Al4V: a parametric thermal modelling approach

    Get PDF
    High cooling rates within the Selective Laser Melting (SLM) process can generate large residual stresses within fabricated components. Understanding residual stress development in the process and devising methods for in-situ reduction continues to be a challenge for industrial users of this technology. Computationally efficient FEA models representative of the process dynamics (temperature evolution and associated solidification behaviour) are necessary for understanding the effect of SLM process parameters on the underlying phenomenon of residual stress build-up. The objective of this work is to present a new modelling approach to simulate the temperature distribution during SLM of Ti6Al4V, as well as the resulting melt pool size, solidification process, associated cooling rates and temperature gradients leading to the residual stress build-up. This work details an isotropic enhanced thermal conductivity model with the SLM laser modelled as a penetrating volumetric heat source. An enhanced laser penetration approach is used to account for heat transfer in the melt-pool due to Marangoni convection. Results show that the developed model was capable of predicting the temperature distribution in the laser/powder interaction zone, solidification behaviour, the associated cooling rates, melt-pool width (with 11% error) and melt-pool depth (with 3% error) for SLM Ti6Al4V. The model was capable of predicting the differential solidification behaviour responsible for residual stress build-up in SLM components. The model predicted trends in cooling rates and temperature gradients for varying SLM parameters, correlated with experimentally measured residual stress trends. Thus the model was capable of accurately predicting the trends in residual stress for varying SLM parameters. This is the first work based on the enhanced penetrating volumetric heat source, combined with an isotropic enhanced thermal conductivity approach. The developed model was validated by comparing FEA melt-pool dimensions with experimental melt-pool dimensions. Secondly the model was validated by comparing the temperature evolution along the laser scan path with experimentally measured temperatures from published literature

    A finite element assessment of the workpiece plastic deformation in machining of Ti-6Al-4V

    Get PDF
    Severe plastic deformation is not desired in machining as it adversely affects surface integrity. In this study, the performance of finite element formulations on subsurface plastic deformation is studied. Finite element models of orthogonal milling of Ti6Al4V have been developed using Update Lagrangian with element deletion as well as continuous remeshing algorithms. The models are validated not only by the measured cutting forces, but quantitative measurements of the subsurface plastic deformation. The results showed that continuous remeshing strategy generate smooth milling forces and predicted the plastic deformation of the machined subsurface with higher accuracy compared to the element deletion method

    Epifluorescent microscopy of edge-trimmed carbon fibre-reinforced polymers : an alternative to computed tomography scanning

    Get PDF
    X-Ray computed tomography (XCT) can be used to detect edge-milled carbon fibre-reinforced polymer (CFRP) defects. Significantly this method is able to show subsurface defects that cannot be captured by traditional methods such as stylus-based or more novel areal methods of surface quality measurement. While useful, this method can be prohibitive due to high equipment cost, scanning time and image resolution. XCT can often produce artefacts which falsely predict damage or obscure damage and depending on machine X-ray power often cannot resolve damage to fibre diameter which is critical when observing milled quality of the surface/subsurface. This study utilises epifluorescent (EF) optical microscopy to provide high-quality optical images as an alternative to XCT to observe through-depth damage of CFRP materials. The method of computing the novel damage criteria is presented, as well as the validation of the method which compares EF to XCT. Subsurface damage of fabric and unidirectional (UD) materials in 0°, 45°, 90° and −45° orientations to the cutting edge is observed to demonstrate typical defects. A novel metric resulting from the EF method provides a total area of damage when compared to a theoretically straight cut across the face of the edge-milled CFRP. The method shows that different subsurface damage exists for different fibre orientations to the cutting edge, highlighting the clear need for through-depth analysis of machined edges. In addition, the method is shown to be a suitable alternative to XCT with scope for further development of industrial aerospace and automotive quality control of machined CFRP parts

    Quantitative characterization of machining-induced white layers in Ti–6Al–4V

    Get PDF
    Machining-induced white layers can affect the functional performance of engineered components, due to the resulting mechanical and microstructural properties. Destructive inspection methods such as cross-sectional microscopy are typically used to identify white layers, however, these methods are inherently costly and time-consuming. It is, therefore, desirable to detect this anomalous surface feature using non-destructive methods which requires improved knowledge around the characteristics of white layers. The present paper reports on the characterization of white layers formed during machining of Ti–6Al–4V, to aid future development of a reliable non-destructive assessment method. The microstructure of the material in the white layer was found to have a basal α-hexagonal close packed texture and there was no evidence of an α→β phase transformation during white layer formation. The white layer has a highly refined grain structure with an increased nanohardness of up to 15% compared with the bulk material. It is proposed that white layers in Ti–6Al–4V are formed by continuous dynamic recrystallization driven by severe plastic deformation during machining. According to the measured micro-mechanical properties of the white layer, suitable non-destructive testing methods are suggested for the detection of this surface feature

    An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing

    Get PDF
    Vitreous-bonded grinding wheels are widely used for machining features on aerospace components achieving high material removal rates under high pressure coolant. Dressing is a vital stage in the grinding process to ensure a consistent wheel topography and performance. However, the effects of roller dressing on functional performance of vitreous grinding wheels as well as its influence on different abrasive grit morphologies have not been fully characterised. This paper studies the influence of dressing parameters on the topography, morphology and characteristics of the surface of different vitrified abrasive wheels in order to better understand the process and therefore optimise the preparation of grinding wheels for industrial machining. Alumina grinding wheels with conventional and engineered grit shapes were dressed at two different infeed rates over a range of seven different speed ratios (from −0.8 to +1). An experimental methodology has been developed incorporating a range of known techniques to define the abrasive wheel condition including measured power consumption and ground graphite coupons as well as using optical microscopes to measure grain fracture flats, peak density and abrasive grain shape. It has been found that power consumption of the grinding wheel spindle increases at higher infeed rates and speed ratios. This leads to increased fracturing of the grains and whole-grain pull out. According to the results the infeed rate has a more substantial effect on wheel topography than speed ratio and the response of engineered grit morphologies to dressing is dependent on grit orientation

    Non-destructive detection of machining-induced white layers in ferromagnetic alloys

    Get PDF
    Machining-induced white layers are an undesirable surface integrity feature which, due to their physical properties, can have a direct effect on the in-service performance of aero-engine components. Typically, destructive methods such as cross-sectional microscopy are used during inspection to identify white layers. This is costly, both in terms of parts sacrificed and time-consumed. A non-destructive evaluation method could speed-up inspection and allow all parts to be inspected before entering service as well as throughout the component life cycle. The present work covers the quantitative characterization of machining-induced white layers in super chrome molybdenum vanadium steel through destructive methods in addition to Barkhausen noise non-destructive testing of the same surfaces. White layers formed by machining with severely worn inserts were measured to be up to 50% harder than the bulk material, possess nano-scale grains and can have an associated compressive residual stress state of up to -1800 MPa. Barkhausen noise testing was used to show that surfaces with a white layer formed by SPD could be detected by measuring shifts in the peak frequency of the Barkhausen noise signal, caused by the compressive near-surface residual stress state associated with the formation of white layers of this type

    Analyzing the properties promoting shear bands and damage initiation in 3-point bending of ultra-high strength steel

    Get PDF
    Ultra-high strength steels (UHSS) have been developed to reduce the weight and increase strength capability of high value products such as crane structures. The bendability of UHSS steels has limited its application in production as their yield strength has increased, the bendability has been found to reduce with the reduction of tensile ductility. In this paper, the material properties affecting bendability in UHSS have been investigated and factors have been identified by analysing specimens pre and post bend testing [1-3] using a combined approach of in- and ex-situ small mechanical testing, Digital Image Correlation (DIC), modelling and characterisation. The propagation of shear bands in bending has been identified as the mechanism promoting damage in the tensile face to occur in the bending of steels. Identifying these factors combined to promote failure is of great importance while also developing a practical approach to identifying procedures to improve bendability. A small-scale bend test with new tooling and specimen geometry has been conducted inside the chamber of a Camscan SEM to observe the propagation of shear bands and damage initiation at the scale of the microstructure. Micrographs produced during the test were processed using DIC to study shear band formation in relation to strain distributions. Using these techniques shear bands and damage are observed at the tensile surface of the bend test. The strain localises in shear bands in a bifurcating pattern from the tensile surface in bending. Damage initiates at the surface where these shear bands intersect promoting a high strain at the surface. This damage promotes the shear bands to move through the sub-surface promoting further deformation then promoting more damage when the plasticity is exhausted. In this test a large 5µm inclusion is observed to interact with shear bands and seen to affect the damage propagation of the specimen and localise high strains at a region local to it. This region is where the failure originates from. Further analysis of the interaction between subsurface properties and the localisation of strain and shear bands will be studied

    Multiscale characterisation of the mechanical properties of austenitic stainless steel joints

    Get PDF
    A multiscale investigation was pursued in order to obtain the strain distribution and evolution during tensile testing both at the macro- and micro-scale for a diffusion bonded 316L stainless steel. The samples were designed for the purpose to demonstrate that the bond line properties were equal or better than the parent material in a sample geometry that was extracted from a larger component. The macroscopic stress-strain curves were coupled to the strain distributions using a camera-based 2D – Digital Image Correlation system. Results showed significant amount of plastic deformation predominantly concentrated in shear bands which were extended over a large region, crossing through the joint area. Yet it was not possible to be certain whether the joint has shown significant plastic deformation. In order to obtain the joints’ mechanical response in more detail, in situ micromechanical testing was conducted in the SEM chamber that allowed areas of 1x1 mm2 and 50x50 mm2 to be investigated. The size of the welded region was rather small to be accurately captured from the camera based DIC system. Therefore a microscale investigation was pursued where the samples were tested within an SEM chamber. Low magnification SEM imaging was utilised in order to cover a viewing area of 1 mm×1 mm while high magnification SEM imaging was employed to provide evidence of the occurrence of plastic deformation within the joint, at an area of just 50 μm×50 μm. The strain evolution over the microstructural level, within the joint and at the base material was obtained. The local strains were highly non-homogeneous through the whole test. Final failure occurred approximately 0.2 mm away from the joint. Large local strains were measured within the joint region, while SEM imaging showed that plastic deformation occurs via the formation of strong slip bands, followed by the activation of additional slip systems upon further plastic deformation which end up in additional slip bands to form on the surface. Plastic deformation occurred by slip and twinning mechanisms. Upon necking, significant out of plane deformations and slip deformation mechanisms were observed which suggested that plastic deformation was also happening at the last stages of damage evolution for the specific alloy. This was also evident from the large difference between the 600 MPa UTS stress value and the low stress values before final failure (which in many cases was below 30 MPa)
    • …
    corecore