2,713 research outputs found

    Non-Abelian Monopoles as the Origin of Dark Matter

    Full text link
    We suggest that dark matter may be partially constituted by a dilute 't Hooft-Polyakov monopoles gas. We reach this conclusion by using the Georgi-Glashow model coupled to a dual kinetic mixing term FG~ F{\tilde {\cal G}} where FF is the electromagnetic field and G{\cal G} the 't Hooft tensor. We show that these monopoles carry both (Maxwell) electric and (Georgi-Glashow) magnetic charges and the electric charge quantization condition is modified in terms of a dimensionless real parameter. This parameter could be determined from milli-charged particle experiments.Comment: 5 pp, no figure

    Infinite slabs and other weird plane symmetric space-times with constant positive density

    Full text link
    We present the exact solution of Einstein's equation corresponding to a static and plane symmetric distribution of matter with constant positive density located below z=0z=0. This solution depends essentially on two constants: the density ρ\rho and a parameter Îș\kappa. We show that this space-time finishes down below at an inner singularity at finite depth. We match this solution to the vacuum one and compute the external gravitational field in terms of slab's parameters. Depending on the value of Îș\kappa, these slabs can be attractive, repulsive or neutral. In the first case, the space-time also finishes up above at another singularity. In the other cases, they turn out to be semi-infinite and asymptotically flat when z→∞z\to\infty. We also find solutions consisting of joining an attractive slab and a repulsive one, and two neutral ones. We also discuss how to assemble a "gravitational capacitor" by inserting a slice of vacuum between two such slabs.Comment: 8 page

    Magnetic-Dipole Spin Effects in Noncommutative Quantum Mechanics

    Get PDF
    A general three-dimensional noncommutative quantum mechanical system mixing spatial and spin degrees of freedom is proposed. The analogous of the harmonic oscillator in this description contains a magnetic dipole interaction and the ground state is explicitly computed and we show that it is infinitely degenerated and implying a spontaneous symmetry breaking. The model can be straightforwardly extended to many particles and the main above properties are retained. Possible applications to the Bose-Einstein condensation with dipole-dipole interactions are briefly discussed.Comment: New references added, implications with Bose-Einstein condensationare discussed and some portions of the manuscript rewritte

    Dirac Operator on a disk with global boundary conditions

    Get PDF
    We compute the functional determinant for a Dirac operator in the presence of an Abelian gauge field on a bidimensional disk, under global boundary conditions of the type introduced by Atiyah-Patodi-Singer. We also discuss the connection between our result and the index theorem.Comment: RevTeX, 11 pages. References adde

    On the energy-momentum tensor

    Get PDF
    We clarify the relation among canonical, metric and Belinfante's energy-momentum tensors for general tensor field theories. For any tensor field T, we define a new tensor field \til {\bm T}, in terms of which the Belinfante tensor is readily computed. We show that the latter is the one that arises naturally from Noether Theorem for an arbitrary spacetime and it coincides on-shell with the metric one.Comment: 11 pages, 1 figur

    Aharonov-Bohm effect in a Class of Noncommutative Theories

    Get PDF
    The Aharonov-Bohm effect including spin-noncommutative effects is considered. At linear order in Ξ\theta, the magnetic field is gauge invariant although spatially strongly anisotropic. Despite this anisotropy, the Schr\"odinger-Pauli equation is separable through successive unitary transformations and the exact solution is found. The scattering amplitude is calculated and compared with the usual case. In the noncommutative Aharonov-Bohm case the differential cross section is independent of Ξ\theta.Comment: 10 page

    Chiral Anomaly Beyond Lorentz Invariance

    Full text link
    The chiral anomaly in the context of an extended standard model with minimal Lorentz invariance violation is studied. Taking into account bounds from measurements of the speed of light, we argue that the chiral anomaly and its consequences are general results valid even beyond the relativistic symmetry.Comment: Final version. To be published in PR

    Determinants of Dirac operators with local boundary conditions

    Get PDF
    We study functional determinants for Dirac operators on manifolds with boundary. We give, for local boundary conditions, an explicit formula relating these determinants to the corresponding Green functions. We finally apply this result to the case of a bidimensional disk under bag-like conditions.Comment: standard LaTeX, 24 pages. To appear in Jour. Math. Phy
    • 

    corecore