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A general three-dimensional noncommutative quantum mechanical system mixing spatial and spin
degrees of freedom is proposed. The analogous of the harmonic oscillator in this description contains a
magnetic dipole interaction and the ground state is explicitly computed and we show that it is infinitely
degenerated and implying a spontaneous symmetry breaking. The model can be straightforwardly
extended to many particles and the main above properties are retained. Possible applications to the
Bose–Einstein condensation with dipole–dipole interactions are briefly discussed.

© 2009 Elsevier B.V. Open access under CC BY license. 
In the last few years several aspects of noncommutative quan-
tum mechanics (NCQM) have been discussed extensively from dif-
ferent points of view [1]. One of the main motivations was to
consider NCQM as a theoretical laboratory where some ideas of
quantum field theory could be realized and — at the same time —
to develop NCQM as a new calculational tool in standard quantum
mechanics.

In this Letter we would like to propose a non-relativistic NCQM
model where dipole (and higher multipole) interactions are gen-
erated as a consequence of a particular commutative realization
of the noncommutative algebra. In so doing, we will first consider
a general system where the above mentioned realization is pre-
sented and after that the analogous of the harmonic oscillator will
be explicitly discussed.

This last example is nontrivial since in the experiments the
atoms are confined to a finite region of the space, situation which
is usually modellated, in a first approximation, by the harmonic
oscillator. In addition, the present model for potentials depend-
ing on higher powers of coordinates, introduces also spin–spin
interactions. This fact is relevant, for example, for Bose–Einstein
condensation experiments with ultracold 52Cr [2,3]. The bosonic
chromium isotopes have a vanishing nuclear spin, very large mag-
netic moment and integer total spin. In this context the dipole–
dipole interactions become dominant if one adjust suitably the co-
efficients in the contact interaction and, therefore — in this regime
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— one could study new and interesting properties by using our
model.

Thus, although many approaches are consecrated to dipolar sys-
tems [4,5], one the goals of this Letter will be offer a new and
unconventional approach to systems.

In order to expose our results, let us consider the non-
commutative spatial coordinates of a three-dimensional space, x̂i ,
the conjugate momenta, p̂i , and spin variables, ŝi , which we will
assume to satisfy the non-standard deformed Heisenberg algebra

[x̂i, x̂ j] = iθ2εi jk ŝk,

[x̂i, p̂ j] = iδi j, [p̂i, p̂ j] = 0,

[x̂i, ŝ j] = iθεi jk ŝk, [ŝi, ŝ j] = iεi jk ŝk, (1)

where θ is a parameter with length dimension and the indices
i, j,k run from 1 to 3.

The first commutator is reminiscent of the Snyder’s algebra [6],
who considered for the first time a noncommutative Lorentz-
invariant spacetime (see also [7]). In our non-relativistic model,
instead of closing the coordinates algebra to the total angular mo-
mentum components — as required by Lorentz-invariance in [6] —
we will consider only the spin operator (s). Otherwise, one should
also modify the commutator [x, p] in order to satisfy the Jacobi’s
identity [8].

The algebra (1) can be explicitly realized in terms of commuta-
tive variables by means of the identification

x̂i → x̂i = xi + θ si,

p̂i → p̂i = pi := −ı∂i,
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ŝi → ŝi = si := σi

2
, (2)

where xi and pi are now canonical operators satisfying the Heisen-
berg’s algebra. Notice the matricial character of the noncommuta-
tive coordinate operators x̂i .

This simple observation implies that any noncommutative
quantum mechanical system described by

ı∂t
∣∣ψ(t)

〉 = Ĥ(p̂, x̂, ŝ)
∣∣ψ(t)

〉 =
[

1

2
p̂2 + V̂ (x̂)

]∣∣ψ(t)
〉

(3)

can equivalently be described by the commutative Schrödinger
equation

ı∂tψ(x, t) = H(pi, xi + θ si)ψ(x, t), (4)

where ψ(x, t) is a Pauli spinor.
The quantum mechanical system (4) cannot be solved exactly

for a general Hamiltonian, but one can consider particular exam-
ples from which one can try to extract more general conclusions.
Indeed, let us consider as an illustrative example the isotropic har-
monic oscillator in this three-dimensional noncommutative space,
described by the Hamiltonian

H = −1

2
∇2 + 1

2
x̂2 = −1

2
∇2 + 1

2
(x + θs)2. (5)

Contrarily to the commutative case, this is a non-trivial example
due the presence of the x · s dipole interaction, whose effects could
be incorporated through perturbation theory.

Instead of studying this system, we will consider the supersym-
metric version of this model, whose ground state can be found by
means of the usual supersymmetry techniques. Indeed, notice that
the Hamiltonian (5) can be written as

H̃ = H − E0 = Q †
i Q , (6)

where H̃ is the commutative Hamiltonian with the ground state
energy of the (commutative) isotropic harmonic oscillator sub-
tracted (E0 = 3/2), and

Q i = 1√
2
(∂i + x̂i), Q †

i = 1√
2
(−∂i + x̂i), (7)

where x̂i = xi + θ si .
In the conventional (commutative) case, Q i and Q †

i are just
creation and annihilation operators, but in the present non-
commutative case this interpretation is lost and the explicit cal-
culation of the commutators gives

[Q i, Q j] = iθ2

2
εi jksk = [

Q †
i , Q †

j

]
,

[
Q i, Q †

j

] = δi j + iθ2

2
εi jksk (8)

(which reduces to the standard algebra of creation and annihilation
operators in the θ → 0 limit).

Following Refs. [9] and [10] (see also [11]), we construct a
supersymmetric version of the above system by defining super-
charges following the ansatz,

Q i → S = Q iψi = Q iσi ⊗ σ− = Q ⊗ σ−, (9)

Q †
i → S† = Q †

i ψ
†
i = Q †

i σi ⊗ σ+ = Q † ⊗ σ+, (10)

where Q = Q iσi , Q † = Q †
i σi and σ± = 1

2 (σ1 ± iσ2), with the prop-
erty σ 2± = 0.

The supersymmetric Hamiltonian is defined as the non-negative
operator
Hs := 1

2

{
S†, S

} = 1

2
Q † Q ⊗ 1 + σ3

2
+ 1

2
Q Q † ⊗ 1 − σ3

2
, (11)

and this prescription obviously fulfills

[S, Hs] = 0 = [
S†, Hs

]
,

{S, S} = 0 = {
S†, S†}. (12)

Notice that this Hamiltonian is defined on a space of four compo-
nent functions (a pair of spinors),

ψ =
(

Ψ (1)

Ψ (2)

)
.

A straightforward calculation yields

Hs = 1

2

(
−1

2
∇2 + 1

2
x2 + 3θx · s + 9

8
θ2

)
⊗ 12×2

− 1

2

(
2s · L + 3

2

)
⊗ σ3

= Hss + HNC, (13)

where

Hss = 1

2

(
−1

2
∇2 + 1

2
x2

)
⊗ 12×2 − 1

2

(
2s · L + 3

2

)
⊗ σ3, (14)

is the standard supersymmetric Hamiltonian in three dimensions
for the harmonic oscillator, whereas

HNC = 1

2

(
3θx · s + 9

8
θ2

)
⊗ 12×2, (15)

is the correction due to noncommutativity. Actually, the term x · s
is the dipole interaction mentioned above and 9

8 θ2 is just a correc-
tion to the ground state energy.

One can extract physical information about this noncommuta-
tive supersymmetric oscillator by noticing that, from (11), it fol-
lows that the ground state satisfy

Sψ0 = 0 or S†ψ0 = 0.

For example, if Sψ0 = 0 then

[Q iσi ⊗ σ−]ψ0 = 0,

which implies that ψ0 =
(

Ψ
(1)
0
0

)
, with Ψ

(1)
0 a spinor satisfying

Q Ψ
(1)
0 = Q iσiΨ

(1)
0 = 0. (16)

It can be seen that the general normalized solution of this equation
is

Ψ
(1)
0 = π− 3

4 e
3θ
2 ıkI ·xe− 1

2 (x− 3θ
2 kR )2

χ−(k̂), (17)

where k̂ = kR + ikI is a complex unitary vector (k̂2 = 1 ⇒ kR
2 −

kI
2 = 1, kR · kI = 0) and χ−(k̂) is a constant spinor satisfying

(k̂ · σ )χ−(k̂) = −χ−(k̂),

with χ−(k̂)†χ−(k̂) = 1. On the other hand, it is easy to see that
S†ψ0 = 0 has no normalizable solutions.

From (17) we see that the ground state is infinitely degenerated
and that the rotational symmetry is spontaneously broken. Indeed,
it is straightforward to get for the mean value of x and p = −ı∇
in this ground state
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〈x〉k = (
Ψ 0

k ,xΨ 0
k

) = π− 3
2

∫
d3x e−(x− 3θ

2 kR )2
x = 3θ

2
kR , (18)

〈p〉k = (
Ψ 0

k ,−ı∇Ψ 0
k

)

= −ıπ− 3
2

∫
d3x e−(x− 3θ

2 kR )2
[

3θ

2
ıkI −

(
x − 3θ

2
kR

)]

= 3θ

2
kI . (19)

Therefore, the real part of k̂ determines the departure of the mean
position of the particle from the origin, while the imaginary part
determines the mean linear momentum of the particle in the
ground state. Notice that the departure from the origin grows with
the mean linear momentum in a direction orthogonal to it.

Similarly, the mean value of the orbital angular momentum in
the ground state is easily obtained as

(
Ψ 0

k ,LΨ 0
k

) = −ıπ− 3
2

∫
d3x e− 3θ

2 ıkI ·xe− 1
2 (x− 3θ

2 kR )2
(x × ∇)

× e
3θ
2 ıkI ·xe− 1

2 (x− 3θ
2 kR )2

= −ı
3θ

2π3/2

∫
d3x e−(x− 3θ

2 kR )2
(x × k)

=
(

3θ

2

)2

kR × kI = 〈x〉k × 〈p〉k, (20)

which also depends continuously on the vector k.
On the other hand, since the energy of the ground state van-

ishes, the supersymmetry of the model is manifest, and the part-
ner Hamiltonians, H+ = 1

2 Q † Q and H− = 1
2 Q Q †, share the same

spectrum except for the ground state.
These characteristics of our model are quite nontrivial prop-

erties, and are reminiscent of the spontaneous symmetry break-
ing phenomenon in quantum field theory. Actually, as is well
known, the spontaneous symmetry breaking of the vacuum for a
scalar field theory is characterized by a vacuum expectation value
〈0|φ|0〉 = const. 
= 0. Thus, such as in quantum field theory, one
sees that the spontaneous symmetry breaking phenomenon is also
present in our example.

Following the above analogy with quantum field theory one
could argue that the presence of dipolar interactions leads to phase
transitions in the same sense as the spontaneous symmetry break-
ing vacuum yields to phase transitions, e.g. in mean field theory
(Ginzburg–Landau).

The extension of the above model to many interacting particles
is straightforward, e.g.

H =
N∑

i=1

p2
i

2m
+ λ1

2

∑
i 
= j

(x̂i − x̂ j)
2 + λ2

2

∑
i 
= j

(x̂i − x̂ j)
4 + · · · , (21)

where i, j denotes particles indices, and the appearance of dipolar,
quadrupolar and higher multipole interactions are direct to see.

In conclusion, in this Letter we have proposed an approach to
the magnetic multipolar interactions based on a model of NCQM
that contain very peculiar properties such as spontaneous sym-
metry breaking and infinite degenerate ground states. We suggest
that these properties continue being valid even though new inter-
actions be included. Indeed, as was shown above, quadratic inter-
actions induce a nontrivial vacuum structure and, therefore, for N
particles a good ground state could be the trial function

ψ(x1,x2, . . .) = ψ(x1) · ψ(x2) · ψ(x3) · · · , (22)

where each ψ(x) correspond to the harmonic oscillator ground
state discussed above.

Within this model, a system dominated by dipole interactions —
as the 52Cr gas — would have infinitely degenerated ground states,
with a spontaneous symmetry breakdown associated to a transi-
tion isotropic–anisotropic, i.e. possibly related to a new phase.
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