325 research outputs found

    Optimized Planar Penning Traps for Quantum Information Studies

    Full text link
    A one-electron qubit would offer a new option for quantum information science, including the possibility of extremely long coherence times. One-quantum cyclotron transitions and spin flips have been observed for a single electron in a cylindrical Penning trap. However, an electron suspended in a planar Penning trap is a more promising building block for the array of coupled qubits needed for quantum information studies. The optimized design configurations identified here promise to make it possible to realize the elusive goal of one trapped electron in a planar Penning trap for the first time - a substantial step toward a one-electron qubit

    Self-Excitation and Feedback Cooling of an Isolated Proton

    Full text link
    The first one-proton self-excited oscillator (SEO) and one-proton feedback cooling are demonstrated. In a Penning trap with a large magnetic gradient, the SEO frequency is resolved to the high precision needed to detect a one-proton spin flip. This is after undamped magnetron motion is sideband-cooled to a 14 mK theoretical limit, and despite random frequency shifts (larger than those from a spin flip) that take place every time sideband cooling is applied in the gradient. The observations open a possible path towards a million-fold improved comparison of the antiproton and proton magnetic moments

    Laser cooling of new atomic and molecular species with ultrafast pulses

    Full text link
    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR

    Electron-radiation interaction in a Penning trap: beyond the dipole approximation

    Full text link
    We investigate the physics of a single trapped electron interacting with a radiation field without the dipole approximation. This gives new physical insights in the so-called geonium theory.Comment: 12 pages, RevTeX, 6 figures, Approved for publication in Phys. Rev.

    Peculiar Features of the Interaction Potential between Hydrogen and Antihydrogen at Intermediate Separations

    Full text link
    We evaluate the interaction potential between a hydrogen and an antihydrogen using the second-order perturbation theory within the framework of the four-body system in a separable two-body basis. We find that the H-Hbar interaction potential possesses the peculiar features of a shallow local minimum located around interatomic separations of r ~ 6 a.u. and a barrier rising at r~5 a.u. Additional theoretical and experimental investigations on the nature of these peculiar features will be of great interest.Comment: 13 pages, 6 figure

    Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion

    Full text link
    We discuss the possibility that dense antihydrogen could provide a path towards a mechanism for a deep space propulsion system. We concentrate at first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a Bose-Einstein Condensate, matter (or antimatter) is in a coherent state analogous to photons in a laser beam, and individual atoms lose their independent identity. This allows many atoms to be stored in a small volume. In the context of recent advances in producing and controlling BECs, as well as in making antihydrogen, this could potentially provide a revolutionary path towards the efficient storage of large quantities of antimatter, perhaps eventually as a cluster or solid.Comment: 12 pages, 3 figure

    Precise laser spectroscopy of the antiprotonic helium atom and CPT test on antiproton mass and charge

    Full text link
    We have measured twelve transition frequencies of the antiprotonic helium atom (pbar-He+) with precisions of 0.1--0.2 ppm using a laser spectroscopic method. The agreement between the experiment and theories was so good that we can put a limit on the proton-antiproton mass (or charge) difference. The new limit is expected to be much smaller than the already published value, 60 ppb.Comment: proceeding of the conference, "PANIC02

    Quantum Logic with a Single Trapped Electron

    Get PDF
    We propose the use of a trapped electron to implement quantum logic operations. The fundamental controlled-NOT gate is shown to be feasible. The two quantum bits are stored in the internal and external (motional) degrees of freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.

    One-Particle Measurement of the Antiproton Magnetic Moment

    Get PDF
    \DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{ÎĽp\mu_{p}{}{}\xspace} \DeclareRobustCommand{\mupbar}{\mu_{\pbar}{}{}\xspace} \DeclareRobustCommand{\muN}{ÎĽN\mu_N{}{}\xspace For the first time a single trapped \pbar is used to measure the \pbar magnetic moment {\bm\mu}_{\pbar}. The moment {\bm\mu}_{\pbar} = \mu_{\pbar} {\bm S}/(\hbar/2) is given in terms of its spin S{\bm S} and the nuclear magneton (\muN) by \mu_{\pbar}/\mu_N = -2.792\,845 \pm 0.000\,012. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using the same method and trap electrodes gives \mu_{\pbar}/\mu_p = -1.000\,000 \pm 0.000\,005 to 5 ppm, for a proton moment ÎĽp=ÎĽpS/(â„Ź/2){\bm{\mu}}_{p} = \mu_{p} {\bm S}/(\hbar/2), consistent with the prediction of the CPT theorem.Comment: 4 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1201.303
    • …
    corecore